cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A019815 Decimal expansion of sine of 6 degrees.

Original entry on oeis.org

1, 0, 4, 5, 2, 8, 4, 6, 3, 2, 6, 7, 6, 5, 3, 4, 7, 1, 3, 9, 9, 8, 3, 4, 1, 5, 4, 8, 0, 2, 4, 9, 8, 1, 1, 9, 0, 8, 0, 6, 5, 5, 8, 6, 9, 4, 7, 4, 5, 9, 3, 1, 1, 3, 9, 9, 3, 2, 7, 5, 4, 7, 6, 7, 1, 2, 4, 8, 4, 6, 5, 0, 6, 9, 3, 1, 8, 0, 0, 4, 6, 8, 2, 8, 1, 8, 0, 3, 9, 8, 7, 9, 8, 6, 0, 4, 4, 2, 6
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 1/8 (-1 - sqrt(5) + sqrt(6*(5 - sqrt(5)))). - Artur Jasinski, Oct 28 2008

Examples

			sin(Pi/30) = 0.10452846...
		

Programs

Formula

Equals cos(7*Pi/15) = -cos(8*Pi/15) = 2F1(6/5,-1/5;1/2;3/4) / 2 = -2F1(13/10,-3/10;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals 2*A019812*A019896. - R. J. Mathar, Jan 17 2021
Smallest positive of the 4 real-valued roots of 16*x^4+8*x^3-16*x^2-8*x+1=0. (Other A019887, -A019875, -A019851) - R. J. Mathar, Aug 31 2025

A019857 Decimal expansion of sine of 48 degrees.

Original entry on oeis.org

7, 4, 3, 1, 4, 4, 8, 2, 5, 4, 7, 7, 3, 9, 4, 2, 3, 5, 0, 1, 4, 6, 9, 7, 0, 4, 8, 9, 7, 4, 2, 5, 6, 9, 7, 7, 1, 8, 9, 1, 1, 3, 8, 7, 3, 4, 9, 8, 0, 2, 6, 3, 8, 6, 0, 4, 0, 1, 2, 3, 6, 7, 0, 5, 4, 7, 7, 7, 0, 3, 4, 4, 4, 2, 1, 1, 1, 9, 1, 2, 5, 4, 1, 4, 1, 6, 4, 0, 5, 4, 2, 4, 8, 0, 8, 3, 8, 0, 8
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.74314482...
		

Crossrefs

Programs

Formula

Equals cos(7*pi/30) = 2F1(17/20,3/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals 2*A019833*A019875. - R. J. Mathar, Jan 17 2021
Equals 1/(sqrt(5+2*sqrt(5))-sqrt(3)). - Seiichi Manyama, Mar 19 2021
4*this^3 -3*this = -A019845. - R. J. Mathar, Aug 29 2025
One of the 8 real-valued roots of 256*x^8-448*x^6+224*x^4-32*x^2+1=0. - R. J. Mathar, Aug 31 2025

A019833 Decimal expansion of sine of 24 degrees.

Original entry on oeis.org

4, 0, 6, 7, 3, 6, 6, 4, 3, 0, 7, 5, 8, 0, 0, 2, 0, 7, 7, 5, 3, 9, 8, 5, 9, 9, 0, 3, 4, 1, 4, 9, 7, 6, 1, 2, 9, 2, 3, 1, 3, 9, 6, 5, 1, 0, 6, 6, 1, 7, 3, 4, 3, 6, 2, 9, 4, 2, 8, 6, 3, 5, 2, 8, 1, 7, 0, 3, 7, 7, 7, 6, 5, 2, 4, 5, 4, 6, 4, 0, 5, 0, 7, 0, 8, 0, 2, 1, 7, 0, 5, 2, 0, 6, 1, 9, 5, 9, 3
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Programs

Formula

Equals sin(2*Pi/15) = sqrt(1-A019875^2) = 2*A019821*A019887. - R. J. Mathar, Jun 18 2006
One of the 8 real-valued roots of 256*x^8-448*x^6+224*x^4-32*x^2+1=0. - R. J. Mathar, Aug 31 2025

A019836 Decimal expansion of sine of 27 degrees.

Original entry on oeis.org

4, 5, 3, 9, 9, 0, 4, 9, 9, 7, 3, 9, 5, 4, 6, 7, 9, 1, 5, 6, 0, 4, 0, 8, 3, 6, 6, 3, 5, 7, 8, 7, 1, 1, 9, 8, 9, 8, 3, 0, 4, 7, 7, 0, 3, 0, 4, 9, 0, 2, 1, 5, 5, 6, 9, 8, 5, 3, 1, 6, 0, 0, 5, 8, 2, 2, 0, 2, 6, 7, 8, 4, 1, 3, 1, 8, 5, 2, 4, 2, 8, 7, 5, 4, 4, 7, 3, 4, 3, 9, 2, 2, 1, 9, 4, 6, 7, 9, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Programs

Formula

Equals cos(7*Pi/20). 2*this^2-1 = -A019845. - R. J. Mathar, Aug 29 2025

A019878 Decimal expansion of sine of 69 degrees.

Original entry on oeis.org

9, 3, 3, 5, 8, 0, 4, 2, 6, 4, 9, 7, 2, 0, 1, 7, 4, 8, 9, 9, 0, 0, 4, 3, 0, 6, 3, 1, 3, 9, 5, 7, 0, 7, 4, 1, 4, 0, 5, 9, 6, 5, 2, 6, 8, 5, 3, 7, 4, 6, 6, 8, 0, 6, 8, 8, 1, 6, 4, 9, 6, 8, 1, 1, 3, 9, 1, 4, 9, 4, 9, 8, 2, 3, 6, 0, 2, 2, 3, 1, 6, 3, 6, 8, 2, 3, 7, 9, 8, 3, 0, 7, 4, 3, 8, 6, 0, 5, 5
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Nov 06 2017

Programs

Formula

A019886 Decimal expansion of sine of 77 degrees.

Original entry on oeis.org

9, 7, 4, 3, 7, 0, 0, 6, 4, 7, 8, 5, 2, 3, 5, 2, 2, 8, 5, 3, 9, 6, 9, 4, 4, 8, 0, 0, 8, 8, 2, 6, 8, 8, 3, 3, 0, 0, 5, 1, 2, 0, 9, 8, 8, 9, 4, 4, 5, 6, 7, 9, 4, 4, 5, 9, 7, 9, 7, 2, 2, 2, 2, 6, 6, 8, 5, 8, 6, 9, 9, 0, 0, 3, 2, 4, 3, 0, 4, 2, 7, 0, 2, 0, 5, 8, 7, 3, 4, 5, 1, 9, 4, 8, 9, 7, 6, 3, 8
Offset: 0

Views

Author

Keywords

Comments

Equals sin(77*Pi/180). - Wesley Ivan Hurt, Sep 01 2014
An algebraic number of degree 48 and denominator 2. - Charles R Greathouse IV, Nov 06 2017

Examples

			0.974370064785235228539694480088268833005120988944567944597972222...
		

Programs

Formula

A306603 a(n) = (2 cos(Pi/15))^n + (2 cos(7 Pi/15))^n + (2 cos(11 Pi/15))^n + (2 cos(13 Pi/15))^n.

Original entry on oeis.org

4, -1, 9, -1, 29, 4, 99, 34, 349, 179, 1254, 824, 4559, 3574, 16704, 15004, 61549, 61709, 227799, 250229, 846254, 1004149, 3153984, 3997399, 11788879, 15812504, 44178624, 62229509, 165946124, 243873904, 624650004, 952400599, 2355748909, 3708579599
Offset: 0

Views

Author

Greg Dresden, Feb 27 2019

Keywords

Comments

a(n) is obtained from the Girard-Waring formula for the sum of powers of N = 4 indeterminates (see A324602), with the elementary symmetric functions e_1 = -1, e_2 = -4, e_3 = -4 and e_4 = 1. The arguments are e_j(x_1, x_2, x_3, x_4), for j = 1..4, with the zeros {x_i}A187360,%20for%20n%20=%2015),%20appearing%20to%20the%20power%20n%20in%20the%20formula%20given%20above.%20-%20_Wolfdieter%20Lang">{i=1..4} of the minimal polynomial of 2*cos(Pi/15) (see A187360, for n = 15), appearing to the power n in the formula given above. - _Wolfdieter Lang, May 08 2019

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A187360, A324602.

Programs

  • Mathematica
    Table[Sum[(2.0 Cos[k Pi/15])^n, {k, {1, 7, 11, 13}}] // Round, {n, 1, 30}]
    LinearRecurrence[{-1,4,4,-1},{4,-1,9,-1},40] (* Harvey P. Dale, Jun 02 2024 *)

Formula

G.f.: (4*x^3+8*x^2-3*x-4)/(-x^4+4*x^3+4*x^2-x-1). - Alois P. Heinz, Feb 27 2019
a(n) = -a(n-1) + 4*a(n-2) + 4*a(n-3) -a(n-4). - Greg Dresden, Feb 27 2019

A019964 Decimal expansion of tangent of 66 degrees.

Original entry on oeis.org

2, 2, 4, 6, 0, 3, 6, 7, 7, 3, 9, 0, 4, 2, 1, 6, 0, 5, 4, 1, 6, 3, 3, 2, 1, 4, 3, 8, 4, 1, 6, 4, 0, 9, 1, 5, 9, 1, 4, 0, 3, 6, 3, 1, 0, 1, 0, 2, 6, 8, 9, 7, 0, 8, 1, 4, 1, 0, 4, 2, 8, 3, 5, 4, 8, 4, 5, 3, 3, 1, 9, 8, 5, 8, 3, 8, 7, 9, 3, 4, 1, 3, 2, 3, 6, 0, 7, 8, 6, 9, 4, 7, 7, 6, 1, 9, 5, 1, 4
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 24 degrees. - Ivan Panchenko, Sep 01 2014

Examples

			2.24603677390421605416332143841640915914036310102689708141...
		

Crossrefs

Cf. A019875 (sine 66 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(11*Pi(R)/30); // G. C. Greubel, Nov 21 2018
    
  • Mathematica
    RealDigits[Tan[73*Pi/180], 10, 100][[1]] (* G. C. Greubel, Nov 21 2018 *)
  • PARI
    default(realprecision, 100); tan(11*Pi/30) \\ G. C. Greubel, Nov 21 2018
    
  • Sage
    numerical_approx(tan(11*pi/30), digits=100) # G. C. Greubel, Nov 21 2018

A306610 a(n) = (2*cos(Pi/15))^(-n) + (2*cos(7*Pi/15))^(-n) + (2*cos(11*Pi/15))^(-n) + (2*cos(13*Pi/15))^(-n), for n >= 1.

Original entry on oeis.org

4, 24, 109, 524, 2504, 11979, 57299, 274084, 1311049, 6271254, 29997829, 143491199, 686373809, 3283190949, 15704770004, 75121978804, 359337430474, 1718849676159, 8221921677724, 39328626006254, 188124003629279, 899869747188249, 4304424455586134
Offset: 1

Views

Author

Greg Dresden, Feb 28 2019

Keywords

Comments

-a(n) is the coefficient of x in the minimal polynomial for (2*cos(Pi/15))^n, for n >= 1. The coefficients of -x^3 are A306603(n), and those of x^2 are A306611(n).
a(n) is obtained from the Girard-Waring formula for the sum of powers of N = 4 indeterminates (see A324602), with the elementary symmetric functions e_1 = 4, e_2 = -4, e_3 = -1 and e_4 = 1. The arguments are e_j(1/x_1, 1/x_2, 1/x_3, 1/x_4), for j = 1..4, with the zeros {x_i}{i=1..4} of the minimal polynomial of 2*cos(Pi/15), appearing under the negative powers of the formula given above. - _Wolfdieter Lang, May 08 2019

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A306603 (positive powers of these cosines), A306611, A324602.

Programs

  • Mathematica
    Table[Round[N[Sum[(2 Cos[k Pi/15])^(-n), {k,{1,7,11,13}}],50]],{n,1,30}]

Formula

a(n) = 4a(n-1) + 4a(n-2) - a(n-3) - a(n-4).
G.f.: x*(-4x^3 -3x^2 +8x +4)/(x^4 +x^3 -4x^2 -4x +1).
a(n) = round((2*cos(7*Pi/15))^(-n)) for n >= 3.

A307886 Array of coefficients of the minimal polynomial of (2*cos(Pi/15))^n, for n >= 1 (ascending powers).

Original entry on oeis.org

1, -4, -4, 1, 1, 1, -24, 26, -9, 1, 1, -109, -49, 1, 1, 1, -524, 246, -29, 1, 1, -2504, -619, -4, 1, 1, -11979, 2621, -99, 1, 1, -57299, -7774, -34, 1, 1, -274084, 30126, -349, 1, 1, -1311049, -97879, -179, 1, 1, -6271254, 363131, -1254, 1, 1, -29997829, -1237504, -824, 1
Offset: 1

Views

Author

Greg Dresden and Wolfdieter Lang, May 02 2019

Keywords

Comments

The length of each row is 5.
The minimal polynomial of (2*cos(Pi/15))^n, for n >= 1, is C(15, n, x) = Product_{j=0..3} (x - (x_j)^n) = Sum_{k=0} T(n, k) x^k, where x_0 = 2*cos(Pi/15), x_1 = 2*cos(7*Pi/15), x_2 = 2*cos(11*Pi/15), and x_3 = 2*cos(13*Pi/15) are the zeros of C(15, 1, x) with coefficients given in A187360 (row n=15).

Examples

			The rectangular array T(n, k) begins:
n\k 0      1      2      3      4
---------------------------------
1:  1     -4     -4      1      1
2:  1    -24     26     -9      1
3:  1   -109    -49      1      1
4:  1   -524    246    -29      1
5:  1  -2504   -619     -4      1
6:  1 -11979   2621    -99      1
7:  1 -57299  -7774    -34      1
...
		

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A187360, A306603, A306610, A306611.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[MinimalPolynomial[(2*Cos[\[Pi]/15])^n, x], x], {n, 1, 15}]]

Formula

T(n,k) = the coefficient of x^k in C(15, n, x), n >= 1, k=0,1,2,3,4, with C(15, n, k) the minimal polynomial of (2*cos(Pi/15))^n, for n >= 1 as defined above.
T(n, 0) = T(n, 4) = 1. T(n, 1) = -A306610(n), T(n, 2) = A306611(n), T(n, 3) = -A306603(n), n >= 1.
Showing 1-10 of 10 results.