cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A020060 a(n) = floor( Gamma(n+9/10)/Gamma(9/10) ).

Original entry on oeis.org

1, 0, 1, 4, 19, 94, 559, 3857, 30477, 271252, 2685395, 29270806, 348322596, 4493361500, 62457724853, 930620100318, 14796859595058, 250066927156481, 4476197996101023, 84600142126309335, 1683542828313555774
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+9/10)/Gamma(9/10)): n in [0..20]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(9/10,n)), n = 0..20); # G. C. Greubel, Nov 13 2019
  • Mathematica
    Floor[Pochhammer[9/10, Range[0, 20]]] (* G. C. Greubel, Nov 13 2019 *)
  • PARI
    vector(21, n, my(x=9/10); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    [floor(rising_factorial(9/10, n)) for n in (0..20)] # G. C. Greubel, Nov 13 2019

A020018 Nearest integer to Gamma(n + 1/10)/Gamma(1/10).

Original entry on oeis.org

1, 0, 0, 0, 1, 3, 15, 91, 649, 5253, 47802, 482796, 5359036, 64844333, 849460756, 11977396665, 180858689642, 2911824903230, 49792205845229, 901238925798638, 17213663482753993, 345994636003355265, 7300486819670796088
Offset: 0

Views

Author

Keywords

Examples

			Gamma(1/10)/Gamma(1/10) = 1, so a(0) = 1.
Gamma(1 + 1/10)/Gamma(1/10) = 1/10 < 1/2, so a(1) = 0.
Gamma(2 + 1/10)/Gamma(1/10) = 11/100 < 1/2, so a(2) = 0.
Gamma(3 + 1/10)/Gamma(1/10) = 231/1000 < 1/2, so a(3) = 0.
Gamma(4 + 1/10)/Gamma(1/10) = 7161/10000 = 0.7161, so a(4) = 1.
Gamma(5 + 1/10)/Gamma(1/10) = 293601/100000 = 2.93601, so a(5) = 3.
Gamma(6 + 1/10)/Gamma(1/10) = 14973651/1000000 = 14.973651, so a(6) = 15.
		

Crossrefs

Cf. A045757, A020063, A020108, A000007 (decimal expansion of 1/10), A256191 (decimal expansion of Gamma(1/10)).

Programs

  • Magma
    [Round(Gamma(n +1/10)/Gamma(1/10)): n in [0..30]]; // G. C. Greubel, Jan 20 2018
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    Table[Round[Gamma[n + 1/10]/Gamma[1/10]], {n, 0, 50}] (* G. C. Greubel, Jan 20 2018 *)
  • PARI
    for(n=0,30, print1(round(gamma(n+1/10)/gamma(1/10)), ", ")) \\ G. C. Greubel, Jan 20 2018
    

A072148 Number of invertible (-1,0,1) n X n matrices having (Tij = -Tji; i

Original entry on oeis.org

2, 14, 92, 796, 7672, 83944
Offset: 1

Views

Author

Wouter Meeussen, Aug 25 2003

Keywords

Comments

The matrix powers T^k reach identity I for k a divisor of 12. All T^k are invertible (-1,0,1)-matrices with determinant +/-1. The matrix |Tij| is symmetric. The matrices T are "pseudo-anti-symmetric" (that is Tij=-Tji except for the main diagonal, or, equivalently, the sum of an anti-symmetric and a diagonal matrix). Their eigenvalues belong to {-1, -I, I, 1, -(-1)^(1/3), (-1)^(1/3), -(-1)^(2/3), (-1)^(2/3)}.

Examples

			{{1,-1,0,0,0},{1,0,0,0,0},{0,0,0,-1,0},{0,0,1,1,0},{0,0,0,0,-1}}
qualifies since its powers are:
{{0,-1,0,0,0},{1,-1,0,0,0},{0,0,-1,-1,0},{0,0,1,0,0},{0,0,0,0,1}},
{{-1,0,0,0,0},{0,-1,0,0,0},{0,0,-1,0,0},{0,0,0,-1,0},{0,0,0,0,-1}},
{{-1,1,0,0,0},{-1,0,0,0,0},{0,0,0,1,0},{0,0,-1,-1,0},{0,0,0,0,1}},
{{0,1,0,0,0},{-1,1,0,0,0},{0,0,1,1,0},{0,0,-1,0,0},{0,0,0,0,-1}},
{{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},{0,0,0,0,1}}.
		

Crossrefs

Programs

  • Mathematica
    triamatsig[li_List] := Block[{len=Sqrt[8Length[li]+1]/2-1/2}, If[IntegerQ[len], (Part[li, # ]&/@ Table[If[j>i, j(j-1)/2+i, i(i-1)/2+j], {i, len}, {j, len}])Table[If[j>i, -1, 1], {i, len}, {j, len}], li]]; n=4; it=triamatsig/@(-1+IntegerDigits[Range[0, -1+3^(n(n+1)/2)], 3, n(n+1)/2]); result4=Cases[it, (q_?MatrixQ)/; Det[q]=!=0 && And@@ Table[Union[Flatten[{MatrixPower[q, k], {-1, 0, 1}}]]==={-1, 0, 1}, {k, 25}]]

Extensions

a(6) from Wouter Meeussen, Nov 15 2005

A182831 Joint-rank array of numbers j*r^(i-1), where r=1+sqrt(2), read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 11, 17, 22, 7, 14, 28, 45, 55, 9, 19, 37, 70, 112, 137, 10, 23, 48, 93, 171, 276, 334, 12, 26, 57, 118, 228, 417, 671, 812, 13, 31, 66, 141, 287, 556, 1010, 1627, 1965, 15, 34, 77, 164, 344, 697, 1347, 2444, 3934, 4751, 16, 39
Offset: 1

Views

Author

Clark Kimberling, Dec 07 2010

Keywords

Comments

Joint-rank arrays are defined in the first comment at A182801. (row 1)=A087063. First 3 columns are A020062, A020063, A020064.
Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers.

Examples

			Northwest corner:
   1  2  4  5 ...
   3  6 11 14 ...
   8 17 28 37 ...
  22 45 70 93 ...
  ...
		

Crossrefs

Cf. A182801.

Programs

  • Mathematica
    T[n_, k_] := Sum[Floor[k*(1 + Sqrt[2])^(n - j)], {j, 1, 100}]; Table[T[k + 1, n - k], {n,1,10}, {k, 0, n-1}]//Flatten (* G. C. Greubel, Aug 18 2018 *)

Formula

T(i,j) = Sum_{n>=1} floor(j*(1+sqrt(2))^(i-n)).
Showing 1-4 of 4 results.