cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A020042 a(n) = round( Gamma(n+1/4)/Gamma(1/4) ).

Original entry on oeis.org

1, 0, 0, 1, 2, 10, 51, 319, 2310, 19061, 176310, 1807181, 20330789, 249052162, 3299941145, 47024161317, 717118460090, 11653174976468, 201017268344078, 3668565147279424, 70619879085128903, 1430052551473860293
Offset: 0

Views

Author

Keywords

Comments

Gamma(n+1/4)/Gamma(1/4) = 1, 1/4, 5/16, 45/64, 585/256, 9945/1024, 208845/4096, 5221125/16384, 151412625/65536, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Magma
    [Round(Gamma(n+1/4)/Gamma(1/4)): n in [0..30]]; // G. C. Greubel, Dec 06 2019
    
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
    seq( round(pochhammer(1/4,n)), n=0..30); # G. C. Greubel, Dec 06 2019
  • Mathematica
    Table[Round[Pochhammer[1/4,n]], {n,0,30}] (* G. C. Greubel, Dec 06 2019 *)
  • PARI
    x=1/4; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ G. C. Greubel, Dec 06 2019
    
  • Sage
    [round(rising_factorial(1/4,n)) for n in (0..30)] # G. C. Greubel, Dec 06 2019

A370397 a(n) = floor(g(n + 1/4)), where g(x) is the function defined for all real numbers except the negative integers by the recurrence formula g(x+1) = g(x)*(x+1), with g(x) = 1 for 0 <= x < 1.

Original entry on oeis.org

1, 1, 2, 9, 38, 203, 1274, 9241, 76242, 705241, 7228724, 81323154, 996208647, 13199764580, 188096645269, 2868473840361, 46612699905873, 804069073376312, 14674260589117694, 282479516340515613, 5720210205895441171
Offset: 0

Views

Author

Lechoslaw Ratajczak, Feb 17 2024

Keywords

Comments

Connection between the gamma function and g(n): gamma(n + 1/k)/gamma(1/k) = g(n + 1/k)/(k*n + 1) for k=1,2,3,...

Examples

			a(0) = 1 because: floor(g(0 + 1/4)) = floor(g(1/4)) = floor(1) = 1.
a(1) = 1 because: floor(g(1 + 1/4)) = floor(g(5/4)) = floor(g(1/4)*(5/4)) = floor((1)*(5/4)) = 1.
a(2) = 2 because: floor(g(2 + 1/4)) = floor(g(9/4)) = floor(g(5/4)*(9/4)) = floor((5/4)*(9/4)) = 2.
a(3) = 9 because: floor(g(3 + 1/4)) = floor(g(13/4)) = floor(g(9/4)*(13/4)) = floor((5/4)*(9/4)*(13/4)) = 9.
a(4) = 38 because: floor(g(4 + 1/4)) = floor(g(17/4)) = floor(g(13/4)*(17/4)) = floor((5/4)*(9/4)*(13/4)*(17/4)) = 38.
		

Crossrefs

Programs

  • Maxima
    makelist(floor(product(4*k+1, k, 1, n)/(4^n)), n, 0, 50);
    
  • Python
    from math import prod
    def A370397(n): return prod(range(5,(n<<2)+2,4))>>(n<<1) # Chai Wah Wu, Apr 28 2024

Formula

g(x) = Product_{k=0..floor(x - 1)} (x - k) for x >= 1.
g(x) = 1/(Product_{k=1..floor(-(x - 1))} (x + k)) for x < 0.
a(n) = floor((Product_{k=1..n} (4*k + 1))/4^n).
a(n) = floor(Product_{k=0..floor(n - 3/4)} (n - k + 1/4)).
a(n) = floor((4*n + 1)*gamma(n + 1/4)/gamma(1/4)).
Showing 1-2 of 2 results.