A020554 Number of multigraphs on n labeled edges (without loops).
1, 1, 3, 16, 139, 1750, 29388, 624889, 16255738, 504717929, 18353177160, 769917601384, 36803030137203, 1984024379014193, 119571835094300406, 7995677265437541258, 589356399302126773920, 47609742627231823142029, 4193665147256300117666879
Offset: 0
Examples
From _Gus Wiseman_, Jul 18 2018: (Start) The a(3) = 16 set multipartitions of {1, 1, 2, 2, 3, 3}: (123)(123) (1)(23)(123) (2)(13)(123) (3)(12)(123) (12)(13)(23) (1)(1)(23)(23) (1)(2)(3)(123) (1)(2)(13)(23) (1)(3)(12)(23) (2)(2)(13)(13) (2)(3)(12)(13) (3)(3)(12)(12) (1)(1)(2)(3)(23) (1)(2)(2)(3)(13) (1)(2)(3)(3)(12) (1)(1)(2)(2)(3)(3) (End)
References
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Peter Cameron, Thomas Prellberg, and Dudley Stark, Asymptotic enumeration of 2-covers and line graphs, Discrete Math. 310 (2010), no. 2, 230-240 (see s_n).
- L. Comtet, Birecouvrements et birevêtements d'un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
Programs
-
Mathematica
Ceiling[ CoefficientList[ Series[ Exp[ -1 + (Exp[ z ] - 1)/2 ]Sum[ Exp[ s(s - 1)z/2 ]/s!, {s, 0, 21} ], {z, 0, 9} ], z ] Table[ n!, {n, 0, 9} ] ] (* Mitch Harris, May 01 2004 *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[mps[Ceiling[Range[1/2,n,1/2]]],And@@UnsameQ@@@#&]],{n,5}] (* Gus Wiseman, Jul 18 2018 *)
Formula
E.g.f.: exp(-3/2+exp(x)/2) * Sum_{n>=0} exp(binomial(n, 2)*x)/n! [Comtet]. - Vladeta Jovovic, Apr 27 2004
E.g.f. (an equivalent version in Maple format): G:=exp(-1+(exp(z)-1)/2)*sum(exp(s*(s-1)*z/2)/s!, s=0..infinity);
E.g.f.: exp((exp(x)-1)/2)*Sum_{n>=0} A020556(n)*(x/2)^n/n!. - Vladeta Jovovic, May 02 2004
Stirling_2 transform of A014500.
Comments