A020713 Pisot sequences E(5,9), P(5,9).
5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046, 1042002567
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT], 2016.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
Crossrefs
Programs
-
Magma
Iv:=[5, 9]; [n le 2 select Iv[n] else Ceiling(Self(n-1)^2/Self(n-2)-1/2): n in [1..40]]; // Bruno Berselli, Feb 04 2016
-
Mathematica
RecurrenceTable[{a[0] == 5, a[1] == 9, a[n] == Ceiling[a[n - 1]^2/a[n - 2]-1/2]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *) LinearRecurrence[{2,-1,1},{5,9,16},40] (* Harvey P. Dale, Aug 03 2021 *)
-
PARI
lista(nn) = {print1(x = 5, ", ", y = 9, ", "); for (n=1, nn, z = ceil(y^2/x -1/2); print1(z, ", "); x = y; y = z;);} \\ Michel Marcus, Feb 04 2016
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (5-x+3*x^2) / (1-2*x+x^2-x^3). - Colin Barker, Jun 05 2016
Theorem: E(5,9) satisfies a(n) = 2 a(n - 1) - a(n - 2) + a(n - 3) for n>=3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
a(n) = (-1)^n * A099529(n+6). - Jinyuan Wang, Mar 10 2020