cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020713 Pisot sequences E(5,9), P(5,9).

Original entry on oeis.org

5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046, 1042002567
Offset: 0

Views

Author

Keywords

Crossrefs

This is a subsequence of A005314.
See A008776 for definitions of Pisot sequences.
Cf. A099529.

Programs

  • Magma
    Iv:=[5, 9]; [n le 2 select Iv[n] else Ceiling(Self(n-1)^2/Self(n-2)-1/2): n in [1..40]]; // Bruno Berselli, Feb 04 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[1] == 9, a[n] == Ceiling[a[n - 1]^2/a[n - 2]-1/2]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
    LinearRecurrence[{2,-1,1},{5,9,16},40] (* Harvey P. Dale, Aug 03 2021 *)
  • PARI
    lista(nn) = {print1(x = 5, ", ", y = 9, ", "); for (n=1, nn, z = ceil(y^2/x -1/2); print1(z, ", "); x = y; y = z;);} \\ Michel Marcus, Feb 04 2016

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (5-x+3*x^2) / (1-2*x+x^2-x^3). - Colin Barker, Jun 05 2016
Theorem: E(5,9) satisfies a(n) = 2 a(n - 1) - a(n - 2) + a(n - 3) for n>=3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
a(n) = (-1)^n * A099529(n+6). - Jinyuan Wang, Mar 10 2020