cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020716 Pisot sequences E(6,8), P(6,8).

Original entry on oeis.org

6, 8, 11, 15, 20, 27, 36, 48, 64, 85, 113, 150, 199, 264, 350, 464, 615, 815, 1080, 1431, 1896, 2512, 3328, 4409, 5841, 7738, 10251, 13580, 17990, 23832, 31571, 41823, 55404, 73395, 97228, 128800, 170624, 226029, 299425, 396654, 525455, 696080, 922110, 1221536
Offset: 0

Views

Author

Keywords

Crossrefs

This is a subsequence of A023434.
See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Exy:=[6,8]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2) + 1/2): n in [1..50]]; // Bruno Berselli, Feb 05 2016
    
  • Mathematica
    RecurrenceTable[{a[0]==6, a[1]==8, a[n]== Floor[a[n-1]^2/a[n-2] + 1/2]}, a, {n, 0, 50}] (* Bruno Berselli, Feb 05 2016 *)
    LinearRecurrence[{1,1,0,-1},{6,8,11,15},50] (* Harvey P. Dale, Jul 27 2025 *)
  • PARI
    Vec((6+2*x-3*x^2-4*x^3)/((1-x)*(1-x^2-x^3)) + O(x^50)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = a(n-1) + a(n-2) - a(n-4) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (6+2*x-3*x^2-4*x^3) / ((1-x)*(1-x^2-x^3)). - Colin Barker, Jun 05 2016
Theorem: E(6,8) satisfies a(n) = a(n - 1) + a(n - 2) - a(n - 4) for n>=4. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger. This shows that the above conjectures are correct. - N. J. A. Sloane, Sep 10 2016
a(n) = a(n-2) + a(n-3) + 1. - Greg Dresden, May 18 2020