cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020797 Decimal expansion of 1/sqrt(40).

Original entry on oeis.org

1, 5, 8, 1, 1, 3, 8, 8, 3, 0, 0, 8, 4, 1, 8, 9, 6, 6, 5, 9, 9, 9, 4, 4, 6, 7, 7, 2, 2, 1, 6, 3, 5, 9, 2, 6, 6, 8, 5, 9, 7, 7, 7, 5, 6, 9, 6, 6, 2, 6, 0, 8, 4, 1, 3, 4, 2, 8, 7, 5, 2, 4, 2, 6, 3, 9, 6, 2, 9, 7, 2, 1, 9, 3, 1, 9, 6, 1, 9, 1, 1, 0, 6, 7, 2, 1, 2, 4, 0, 5, 4, 1, 8, 9, 6, 5, 0, 1, 4
Offset: 0

Views

Author

Keywords

Comments

With offset 1, decimal expansion of sqrt(5/2). - Eric Desbiaux, May 01 2008
sqrt(5/2) appears as a coordinate in a degree-5 integration formula on 13 points in the unit sphere [Stroud & Secrest]. - R. J. Mathar, Oct 12 2011
With offset 2, decimal expansion of sqrt(250). - Michel Marcus, Nov 04 2013
From Wolfdieter Lang, Nov 21 2017: (Start)
The regular continued fraction of 1/sqrt(40) = 1/(2*sqrt(10)) is [0; 6, 3, repeat(12, 3)], and the convergents are given by A(n-1)/B(n-1), n >= 0, with A(-1) = 0, A(n-1) = A041067(n) and B(-1) = 1, B(n-1) = A041066(n).
The regular continued fraction of sqrt(5/2) = sqrt(10)/2 is [1; repeat(1, 1, 2)], and the convergents are given in A295333/A295334.
sqrt(10)/2 is one of the catheti of the rectangular triangle with hypotenuse sqrt(13)/2 = A295330 and the other cathetus sqrt(3)/2 = A010527. This can be constructed from a regular hexagon inscribed in a circle with a radius of 1 unit. If the vertex V_0 has coordinates (x, y) = (1, 0) and the midpoint M_4 = (0, -sqrt(3)/2) then the point L = (sqrt(10)/2, 0) is obtained as intersection of the x-axis and a circle around M_4 with radius taken from the distance between M_4 and V_1 = (1/2, sqrt(3)/2) which is sqrt(13)/2. (End)

Examples

			1/sqrt(40) = 0.15811388300841896659994467722163592668597775696626084134287...
sqrt(5/2) = 1.5811388300841896659994467722163592668597775696626084134287...
sqrt(250) = 15.811388300841896659994467722163592668597775696626084134287...
		

Crossrefs

Cf. A010467 (sqrt(10)), A010527, A010494 (sqrt(40)), A041067/A041066, A295330, A295333/A295334.

Programs

Formula

Equals Re(sqrt(5*i)/10) = Im(sqrt(5*i)/10). - Karl V. Keller, Jr., Sep 01 2020
Equals A010467/20. - R. J. Mathar, Feb 23 2021