cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A295333 Numerators of continued fraction convergents to sqrt(10)/2 = sqrt(5/2) = A020797 + 1.

Original entry on oeis.org

1, 2, 3, 8, 11, 19, 49, 68, 117, 302, 419, 721, 1861, 2582, 4443, 11468, 15911, 27379, 70669, 98048, 168717, 435482, 604199, 1039681, 2683561, 3723242, 6406803, 16536848, 22943651, 39480499, 101904649, 141385148, 243289797, 627964742, 871254539, 1499219281, 3869693101, 5368912382, 9238605483
Offset: 0

Views

Author

Wolfdieter Lang, Nov 21 2017

Keywords

Comments

The denominators are given in A295334.
The regular continued fraction expansion of sqrt(10)/2 is [1, repeat(1, 1, 2)].

Examples

			The convergents a(n)/A295334(n) begin: 1, 2, 3/2, 8/5, 11/7, 19/12, 49/31, 68/43, 117/74, 302/191, 419/265, 721/456, 1861/1177, 2582/1633, 4443/2810, 11468/7253, 15911/10063, 27379/17316, 70669/44695, 98048/62011, ...
		

Crossrefs

Programs

  • Maple
    numtheory:-cfrac(sqrt(5/2),100,'con'):
    map(numer,con[1..-2]); # Robert Israel, Nov 22 2017
  • Mathematica
    Numerator[Convergents[Sqrt[5/2], 50]] (* Vaclav Kotesovec, Nov 22 2017 *)
    LinearRecurrence[{0,0,6,0,0,1},{1,2,3,8,11,19},40] (* Harvey P. Dale, Apr 08 2019 *)

Formula

G.f.: G(x) = (1 + 2*x + 3*x^2 + 2*x^3 - x^4 + x^5)/(1 - 6*x^3 - x^6). From the recurrence a(n) = b(n)*a(n-1) + a(n-2), with the trisection b(3*(k+1)) = 2, b(3*k+1) = 1 = b(3*k+2), k >= 0, b(0) = 1, and the input a(0) = 1 = a(-1). With G_j(x) = Sum_{k>=0} a(3*k+j)*x^k, for j = 0,1,2, one finds (omitting here the G_j arguments) G_0 = 1 + 2*x*G_2 + x*G_1, G_1 = G_0 + 1 + x*G_2, G_2 = G_1 + G_0. This can be solved and leads to the given formula for G(x) = Sum_{j=0..2} x^j*G_j(x^3).
a(n) = 6*a(n-3) + a(n-6), for n >= 6, with inputs a(0)..a(5).

A295334 Denominators of continued fraction convergents to sqrt(10)/2 = sqrt(5/2) = A020797 + 1.

Original entry on oeis.org

1, 1, 2, 5, 7, 12, 31, 43, 74, 191, 265, 456, 1177, 1633, 2810, 7253, 10063, 17316, 44695, 62011, 106706, 275423, 382129, 657552, 1697233, 2354785, 4052018, 10458821, 14510839, 24969660, 64450159, 89419819, 153869978, 397159775, 551029753, 948189528, 2447408809, 3395598337, 5843007146
Offset: 0

Views

Author

Wolfdieter Lang, Nov 21 2017

Keywords

Comments

The numerators are given in A295333. There details are given.

Examples

			For the first convergents see A295333.
		

Crossrefs

Programs

  • Maple
    numtheory:-cfrac(sqrt(5/2),100,'con'):
    map(denom,con[1..-2]); # Robert Israel, Nov 22 2017
  • Mathematica
    Denominator[Convergents[Sqrt[5/2], 50]] (* Wesley Ivan Hurt, Nov 21 2017 *)

Formula

G.f.: G(x) = (1 + x + 2*x^2 - x^3 + x^4)/(1 - 6*x^3 - x^6), For the derivation see A295333, but here the input of the recurrence is a(0) = 1, a(-1) = 0 (a(-2) = a(0) = 1). This leads here to G_0 = 1+ 2*x*G_2 + x*G_1, G_1 = G_0 + x*G_2, G_2 = G_1 + G_0 and the solution gives G(x).
a(n) = 6*a(n-3) + a(n-6), n >= 6, with inputs a(0)..a(5).

A377342 Decimal expansion of the volume of a truncated octahedron with unit edge length.

Original entry on oeis.org

1, 1, 3, 1, 3, 7, 0, 8, 4, 9, 8, 9, 8, 4, 7, 6, 0, 3, 9, 0, 4, 1, 3, 5, 0, 9, 7, 9, 3, 6, 7, 7, 5, 8, 4, 6, 2, 8, 5, 5, 7, 3, 7, 5, 0, 0, 3, 0, 1, 5, 5, 8, 4, 5, 8, 5, 4, 1, 3, 4, 3, 7, 9, 0, 3, 9, 2, 5, 8, 5, 9, 8, 2, 7, 6, 9, 6, 8, 5, 6, 3, 1, 0, 8, 0, 3, 1, 0, 0, 2
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			11.3137084989847603904135097936775846285573750030...
		

Crossrefs

Cf. A377341 (surface area), A020797 (circumradius/10), A152623 (midradius).
Cf. A131594 (analogous for a regular octahedron).

Programs

  • Mathematica
    First[RealDigits[8*Sqrt[2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedOctahedron", "Volume"], 10, 100]]

Formula

Equals 8*sqrt(2) = 8*A002193 = 4*A010466 = 2*A010487.

A041066 Numerators of continued fraction convergents to sqrt(40).

Original entry on oeis.org

6, 19, 234, 721, 8886, 27379, 337434, 1039681, 12813606, 39480499, 486579594, 1499219281, 18477210966, 56930852179, 701647437114, 2161873163521, 26644125399366, 82094249361619, 1011775117738794
Offset: 0

Views

Author

Keywords

Comments

With a(-1) = 1, a(n-1) gives, for n >= 0, the denominator of the convergents to 1/sqrt(40) = 1/(2*sqrt(10)). - Wolfdieter Lang, Nov 21 2017

Crossrefs

Cf. A041067 (denominators), A010494, A020797 (1/sqrt(40)).

Programs

Formula

G.f.: -(x+2)*(x^2-8*x-3) / ((x^2-6*x-1)*(x^2+6*x-1)). - Colin Barker, Nov 04 2013

A041067 Denominators of continued fraction convergents to sqrt(40).

Original entry on oeis.org

1, 3, 37, 114, 1405, 4329, 53353, 164388, 2026009, 6242415, 76934989, 237047382, 2921503573, 9001558101, 110940200785, 341822160456, 4212806126257, 12980240539227, 159975692596981, 492907318330170, 6074863512559021, 18717497856007233, 230684837784645817
Offset: 0

Views

Author

Keywords

Comments

With a(-1) = 0, a(n-1) gives, for n >= 0, the numerator of the convergents to 1/sqrt(40) = 1/(2*sqrt(10)) = A020797. - Wolfdieter Lang, Nov 21 2017

Crossrefs

Cf. A010494, A041066 (numerators).

Programs

  • Magma
    I:=[1, 3, 37, 114]; [n le 4 select I[n] else 38*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[40],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011 *)
    Denominator[Convergents[Sqrt[40],30]] (* Harvey P. Dale, Sep 12 2013 *)
    CoefficientList[Series[-(x^2 - 3 x - 1)/((x^2 - 6 x - 1)(x^2 + 6 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2013 *)

Formula

G.f.: -(x^2-3*x-1) / ((x^2-6*x-1)*(x^2+6*x-1)). - Colin Barker, Nov 12 2013
a(n) = 38*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013

Extensions

More terms from Colin Barker, Nov 12 2013

A377341 Decimal expansion of the surface area of a truncated octahedron with unit edge length.

Original entry on oeis.org

2, 6, 7, 8, 4, 6, 0, 9, 6, 9, 0, 8, 2, 6, 5, 2, 7, 5, 2, 2, 3, 2, 9, 3, 5, 6, 0, 9, 8, 0, 7, 0, 4, 6, 8, 4, 0, 3, 3, 1, 3, 6, 6, 3, 0, 4, 5, 7, 2, 4, 5, 6, 7, 5, 3, 6, 6, 6, 9, 6, 8, 3, 7, 5, 3, 4, 2, 3, 1, 9, 6, 2, 0, 2, 9, 0, 5, 6, 0, 0, 4, 4, 4, 9, 7, 3, 7, 5, 4, 2
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			26.78460969082652752232935609807046840331366304572...
		

Crossrefs

Cf. A377342 (volume), A020797 (circumradius/10), A152623 (midradius).
Cf. A010469 (analogous for a regular octahedron).
Cf. A002194.

Programs

  • Mathematica
    First[RealDigits[6 + 12*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedOctahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 6 + 12*sqrt(3) = 6 + 12*A002194.

A041468 Numerators of continued fraction convergents to sqrt(250).

Original entry on oeis.org

15, 16, 79, 253, 838, 3605, 4443, 136895, 141338, 702247, 2248079, 7446484, 32034015, 39480499, 1216448985, 1255929484, 6240166921, 19976430247, 66169457662, 284654260895, 350823718557, 10809365817605, 11160189536162, 55450123962253, 177510561422921
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[250], 30]] (* Vincenzo Librandi, Nov 03 2013 *)

Formula

G.f.: -(x^13 -15*x^12 +16*x^11 -79*x^10 +253*x^9 -838*x^8 +3605*x^7 +4443*x^6 +3605*x^5 +838*x^4 +253*x^3 +79*x^2 +16*x +15)/(x^14 +8886*x^7 -1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A188924 Decimal expansion of sqrt(4+sqrt(15)).

Original entry on oeis.org

2, 8, 0, 5, 8, 8, 3, 7, 0, 1, 4, 7, 5, 7, 7, 8, 7, 1, 5, 0, 9, 8, 0, 8, 8, 8, 0, 9, 5, 6, 9, 3, 0, 4, 9, 6, 2, 8, 4, 2, 7, 5, 1, 3, 0, 9, 9, 9, 0, 9, 4, 3, 4, 7, 7, 6, 4, 5, 0, 9, 8, 7, 1, 0, 0, 2, 1, 7, 7, 7, 4, 0, 8, 0, 4, 8, 2, 7, 6, 6, 2, 3, 9, 4, 2, 0, 5, 3, 7, 7, 0, 7, 4, 1, 9, 7, 0, 2, 6, 5, 0, 0, 2, 9, 7, 0, 9, 4, 2, 6, 8, 9, 7, 2, 7, 1, 2, 2, 1, 3, 6, 7, 0, 3, 8, 6, 0, 7, 4, 5
Offset: 1

Views

Author

Clark Kimberling, Apr 13 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a sqrt(6)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A sqrt(6)-extension rectangle matches the continued fraction [2,1,4,6,1,1,2,25,3,...] for the shape L/W=sqrt(4+sqrt(15)). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the sqrt(6)-extension rectangle, 2 squares are removed first, then 1 square, then 4 squares, then 6 squares,..., so that the original rectangle of shape sqrt(4+sqrt(15)) is partitioned into an infinite collection of squares.

Examples

			2.8058837014757787150980888095693049628427513...
		

Crossrefs

Programs

  • Mathematica
    r = 6^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
  • PARI
    sqrt(3/2) + sqrt(5/2) \\ Hugo Pfoertner, Feb 20 2024

Formula

Equals A115754 + 10*A020797. - Hugo Pfoertner, Feb 20 2024
Showing 1-8 of 8 results.