A020882 Ordered hypotenuses (with multiplicity) of primitive Pythagorean triangles.
5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 65, 73, 85, 85, 89, 97, 101, 109, 113, 125, 137, 145, 145, 149, 157, 169, 173, 181, 185, 185, 193, 197, 205, 205, 221, 221, 229, 233, 241, 257, 265, 265, 269, 277, 281, 289, 293, 305, 305, 313, 317, 325, 325, 337, 349, 353, 365, 365
Offset: 1
References
- M. de Frénicle, "Méthode pour trouver la solutions des problèmes par les exclusions", in: "Divers ouvrages de mathématiques et de physique, par Messieurs de l'Académie royale des sciences", Paris, 1693, pp 1-44.
Links
- David W. Wilson, Table of n, a(n) for n = 1..10000 (first 1593 terms from M. F. Hasler)
- M. de Frénicle, Méthode pour trouver la solutions des problèmes par les exclusions (B.N.F. permanent link to a scan of the original edition).
- Werner Hürlimann, Exact and Asymptotic Evaluation of the Number of Distinct Primitive Cuboids, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.5.
- Hans Isdahl, Pythagoras site (in Norwegian). [from Internet Archive Wayback Machine]
- Ron Knott, Pythagorean Triples and Online Calculators.
- H. P. Robinson and N. J. A. Sloane, Correspondence, 1971-1972.
- E. S. Rowland, Primitive Solutions to x^2 + y^2 = z^2.
- Michael Somos, Table of primitive Pythagorean triples and related parameters.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
Programs
-
Mathematica
t={};Do[Do[a=Sqrt[c^2-b^2];If[a>b,Break[]];If[IntegerQ[a]&&GCD[a,b,c]==1,AppendTo[t,c]],{b,c-1,3,-1}],{c,400}];t (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *) f[c_] := Block[{a = 1, b, lst = {}}, While[b = Sqrt[c^2 - a^2]; a < b, If[ IntegerQ@ b && GCD[a, b, c] == 1, AppendTo[lst, a]]; a++]; lst] Join @@ Table[ConstantArray[n, Length@f@n], {n, 1, 400, 4}] (* Robert G. Wilson v, Mar 16 2014; corrected by Andrey Zabolotskiy, Oct 31 2019 *)
-
PARI
{my( c=0, new=[]); for( b=1,99, for( a=1, b-1, gcd(b-a,2*a*b) == 1 && new=concat(new,a^2+b^2)); new=vecsort(new); for( j=1,#new, new[j] > (b+1)^2 & (new=vecextract(new, Str(j,".."))) & next(2); write("b020882.txt",c++," "new[j])); new=[])} \\ M. F. Hasler, Apr 04 2010
Formula
a(n) ~ 2*Pi*n. - observation by David W. Wilson, proved by Franklin T. Adams-Watters (cf. comments), Mar 15 2015
Extensions
Edited by N. J. A. Sloane, May 15 2010
Comments