cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020898 Positive cubefree integers n such that the Diophantine equation X^3 + Y^3 = n*Z^3 has solutions.

Original entry on oeis.org

2, 6, 7, 9, 12, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 49, 50, 51, 53, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 97, 98, 103, 105, 106, 107, 110, 114, 115, 117, 123, 124, 126, 127, 130
Offset: 1

Views

Author

Keywords

Comments

These numbers are the cubefree sums of two nonzero rational cubes.
This sequence does not contain A202679, which has members that are not cubefree. - Robert Israel, Mar 16 2016
Notice that 34^3 + 74^3 = 48*21^3 = 6*42^3 because 48 = 6*2^3 is not cubefree, but now 17^3 + 37^3 = 6*21^3 and 6 is already listed in the sequence. - Michael Somos, Mar 13 2023

Examples

			37^3 + 17^3 = 6*21^3 is the smallest positive solution for n = 6 (found by Lagrange).
5^3 + 4^3 = 7*3^3 is the smallest positive solution for n = 7.
		

References

  • B. N. Delone and D. K. Faddeev, The Theory of Irrationalities of the Third Degree, Amer. Math. Soc., 1964.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2, Chap. XXI, Chelsea NY 1966.
  • L. J. Mordell, Diophantine Equations, Academic Press, Chap. 15.

Crossrefs

Programs

  • Mathematica
    (* A naive program with a few pre-computed terms *) nmax = 130; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Reap[ Do[ n = CubeFreePart[ x*y*(x+y) ]; If[ 1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union; A020898 = Union[nn, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107, 123}](* Jean-François Alcover, Mar 30 2012 *)

Extensions

Entry revised by N. J. A. Sloane, Aug 12 2004
Links updated by Max Alekseyev, Oct 17 2007 and Dec 12 2007