A020929
Expansion of (1-4*x)^(17/2).
Original entry on oeis.org
1, -34, 510, -4420, 24310, -87516, 204204, -291720, 218790, -48620, -9724, -5304, -4420, -4760, -6120, -8976, -14586, -25740, -48620, -97240, -204204, -447304, -1016600, -2386800, -5768100, -14304888, -36312408, -94143280, -248807240, -669205680, -1829162192
Offset: 0
-
CoefficientList[Series[(1 - 4 x)^(17/2), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 18 2020 *)
A020931
Expansion of (1-4*x)^(19/2).
Original entry on oeis.org
1, -38, 646, -6460, 41990, -184756, 554268, -1108536, 1385670, -923780, 184756, 33592, 16796, 12920, 12920, 15504, 21318, 32604, 54340, 97240, 184756, 369512, 772616, 1679600, 3779100, 8767512, 20907144, 51106352, 127765880, 326023280, 847660528, 2242198816
Offset: 0
-
CoefficientList[Series[(1-4x)^(19/2),{x,0,30}],x] (* Harvey P. Dale, Jul 03 2013 *)
A182411
Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.
Original entry on oeis.org
1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0
Triangle begins:
1;
2, 2;
6, 4, 6;
20, 10, 12, 20;
70, 28, 28, 40, 70;
252, 84, 72, 90, 140, 252;
924, 264, 198, 220, 308, 504, 924;
3432, 858, 572, 572, 728, 1092, 1848, 3432;
12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870;
48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620;
...
Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
- Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.
- Alexander Borisov, Quotient singularities, integer ratios of factorials and the Riemann Hypothesis, arXiv:math/0505167 [math.NT], 2005; International Mathematics Research Notices, Vol. 2008, Article ID rnn052, page 2 (Theorem 2).
- Ira Gessel, Integer quotients of factorials and algebraic multivariable hypergeometric series, MIT Combinatorics Seminar, September 2011 (slides).
- Hans-Christian Herbig and Mateus de Jesus Gonçalves, On the numerology of trigonometric polynomials, arXiv:2311.13604 [math.HO], 2023.
- Kevin Limanta and Norman Wildberger, Super Catalan Numbers, Chromogeometry, and Fourier Summation over Finite Fields, arXiv:2108.10191 [math.CO], 2021. See Table 1 p. 2 where terms are shown as an array.
-
[Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
-
Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]
A020933
Expansion of (1-4*x)^(21/2).
Original entry on oeis.org
1, -42, 798, -9044, 67830, -352716, 1293292, -3325608, 5819814, -6466460, 3879876, -705432, -117572, -54264, -38760, -36176, -40698, -52668, -76076, -120120, -204204, -369512, -705432, -1410864, -2939300, -6348888, -14162904, -32522224, -76659528, -185040240
Offset: 0
Cf.
A001622,
A002420,
A002421,
A002422,
A002423,
A002424,
A020923,
A020925,
A020927,
A020929,
A020931.
-
CoefficientList[Series[Surd[(1-4x)^21,2],{x,0,30}],x] (* Harvey P. Dale, Feb 25 2020 *)
Showing 1-4 of 4 results.
Comments