cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020985 The Rudin-Shapiro or Golay-Rudin-Shapiro sequence (coefficients of the Shapiro polynomials).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1
Offset: 0

Views

Author

Keywords

Comments

Other names are the Rudin-Shapiro or Golay-Rudin-Shapiro infinite word.
The Shapiro polynomials are defined by P_0 = Q_0 = 1; for n>=0, P_{n+1} = P_n + x^(2^n)*Q_n, Q_{n+1} = P_n - x^(2^n)*Q_n. Then P_n = Sum_{m=0..2^n-1} a(m)*x^m, where the a(m) (the present sequence) do not depend on n. - N. J. A. Sloane, Aug 12 2016
Related to paper-folding sequences - see the Mendès France and Tenenbaum article.
a(A022155(n)) = -1; a(A203463(n)) = 1. - Reinhard Zumkeller, Jan 02 2012
a(n) = 1 if and only if the numbers of 1's and runs of 1's in binary representation of n have the same parity: A010060(n) = A268411(n); otherwise, when A010060(n) = 1 - A268411(n), a(n) = -1. - Vladimir Shevelev, Feb 10 2016. Typo corrected and comment edited by Antti Karttunen, Jul 11 2017
A word that is uniform primitive morphic, but not pure morphic. - N. J. A. Sloane, Jul 14 2018
Named after the Austrian-American mathematician Walter Rudin (1921-2010), the mathematician Harold S. Shapiro (1928-2021) and the Swiss mathematician and physicist Marcel Jules Edouard Golay (1902-1989). - Amiram Eldar, Jun 13 2021

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 78 and many other pages.

Crossrefs

Cf. A022155, A005943 (factor complexity), A014081.
Cf. A020987 (0-1 version), A020986 (partial sums), A203531 (run lengths), A033999, A380667 (first differences).
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.

Programs

  • Haskell
    a020985 n = a020985_list !! n
    a020985_list = 1 : 1 : f (tail a020985_list) (-1) where
       f (x:xs) w = x : x*w : f xs (0 - w)
    -- Reinhard Zumkeller, Jan 02 2012
    
  • Maple
    A020985 := proc(n) option remember; if n = 0 then 1 elif n mod 2 = 0 then A020985(n/2) else (-1)^((n-1)/2 )*A020985( (n-1)/2 ); fi; end;
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_?EvenQ] := a[n] = a[n/2]; a[n_?OddQ] := a[n] = (-1)^((n-1)/2)* a[(n-1)/2]; a /@ Range[0, 80] (* Jean-François Alcover, Jul 05 2011 *)
    a[n_] := 1 - 2 Mod[Length[FixedPointList[BitAnd[#, # - 1] &, BitAnd[n, Quotient[n, 2]]]], 2] (* Jan Mangaldan, Jul 23 2015 *)
    Array[RudinShapiro, 81, 0] (* JungHwan Min, Dec 22 2016 *)
  • PARI
    A020985(n)=(-1)^A014081(n)  \\ M. F. Hasler, Jun 06 2012
    
  • Python
    def a014081(n): return sum([((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1)])
    def a(n): return (-1)**a014081(n) # Indranil Ghosh, Jun 03 2017
    
  • Python
    def A020985(n): return -1 if (n&(n>>1)).bit_count()&1 else 1 # Chai Wah Wu, Feb 11 2023

Formula

a(0) = a(1) = 1; thereafter, a(2n) = a(n), a(2n+1) = a(n) * (-1)^n. [Brillhart and Carlitz, in proof of theorem 4]
a(0) = a(1) = 1, a(2n) = a(n), a(2n+1) = a(n)*(1-2*(n AND 1)), where AND is the bitwise AND operator. - Alex Ratushnyak, May 13 2012
Brillhart and Morton (1978) list many properties.
a(n) = (-1)^A014081(n) = (-1)^A020987(n) = 1-2*A020987(n). - M. F. Hasler, Jun 06 2012
Sum_{n >= 1} a(n-1)*(8*n^2+4*n+1)/(2*n*(2*n+1)*(4*n+1)) = 1; see Allouche and Sondow, 2015. - Jean-Paul Allouche and Jonathan Sondow, Mar 21 2015