A020989 a(n) = (5*4^n - 2)/3.
1, 6, 26, 106, 426, 1706, 6826, 27306, 109226, 436906, 1747626, 6990506, 27962026, 111848106, 447392426, 1789569706, 7158278826, 28633115306, 114532461226, 458129844906, 1832519379626, 7330077518506, 29320310074026, 117281240296106, 469124961184426
Offset: 0
Examples
a(0) = 1; a(1) = 1 + 4 + 1 = 6; a(2) = 1 + 4 + 16 + 4 + 1 = 26; a(3) = 1 + 4 + 16 + 64 + 16 + 4 + 1 = 106; etc. - _Philippe Deléham_, Feb 22 2014
References
- Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, at pp. 104 and 311 (for "Mr. Zanti's ants").
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- John Brillhart and Patrick Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois Journal of Mathematics, volume 22, issue 1, 1978, pages 126-148. See Satz 9(a) page 132 and Satz 21 page 144 m_k = a(k).
- John Brillhart and Patrick Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869, see page 858 m_k = a(k).
- Kevin Ryde, Iterations of the Alternate Paperfolding Curve, see index "m_k".
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Programs
-
Magma
[(5*4^n-2)/3: n in [0..25]]; // Vincenzo Librandi, Jul 24 2011
-
Mathematica
NestList[4#+2&,1,25] (* Harvey P. Dale, Jul 23 2011 *)
-
PARI
a(n)=(5*4^n-2)/3 \\ Charles R Greathouse IV, Jul 02 2013
Formula
a(0) = 1, a(n) = 4*a(n-1) + 2; a(n) = a(n-1)+ 5*{4^(n-1)}; - Amarnath Murthy, May 27 2001
G.f.: (1+x)/((1-4*x)*(1-x)). - Zerinvary Lajos, Jan 11 2009; adapted to offset by Philippe Deléham, Feb 22 2014
a(n) = 5*a(n-1) - 4*a(n-2), a(0) = 1, a(1) = 6. - Philippe Deléham, Feb 22 2014
a(n) = Sum_{k=0..n} A112468(n,k)*5^k. - Philippe Deléham, Feb 22 2014
a(n) = 10*A020988(n-1) + 6. - Yosu Yurramendi, Feb 19 2017
E.g.f.: exp(x)*(5*exp(3*x) - 2)/3. - Stefano Spezia, Apr 10 2022
Comments