cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357291 a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least two elements of S) < difference between greatest two elements of S.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 42, 89, 185, 378, 766, 1544, 3102, 6220, 12459, 24939, 49902, 99831, 199692, 399417, 798871, 1597782, 3195608, 6391264, 12782580, 25565216, 51130493, 102261051, 204522172, 409044419, 818088918, 1636177921, 3272355933
Offset: 0

Views

Author

Clark Kimberling, Oct 02 2022

Keywords

Examples

			The 3 relevant subsets of {1,2,3,4,5,6,7} are {1, 2, 6}, {1, 2, 7}, {1, 2, 3, 7}.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Select[Subsets[Range[n]], Length[#] >= 3 &];
    a[n_] := Select[s[n], #[[1]] + #[[2]] < #[[-1]] - #[[-2]] &]
    Table[Length[a[n]], {n, 0, 15}]

Formula

a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) + 3*a(n-6) - 2*a(n-7).
G.f.: x^6/((-1 + x)^3 (1 + x) (-1 + 2 x) (1 + x + x^2)).
a(n) ~ A021025*2^n. - Stefano Spezia, Oct 03 2022
a(n) = 2^n/21 - n^2/12 + n/6 + O(1). Conjecture: a(n) = round(2^n/21 - n^2/12 + n/6). - Charles R Greathouse IV, Oct 11 2022

A030851 a(n) = floor(exp(1/21) * n!).

Original entry on oeis.org

1, 2, 6, 25, 125, 755, 5285, 42286, 380578, 3805780, 41863584, 502363009, 6530719126, 91430067771, 1371451016567, 21943216265073, 373034676506249, 6714624177112491, 127577859365137340, 2551557187302746813
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A021025 (1/21).

Programs

  • Mathematica
    Floor[Exp[1/21] Range[20]!] (* Harvey P. Dale, Jan 22 2015 *)

A118321 Decimal expansion of 8/105.

Original entry on oeis.org

0, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6, 1, 9, 0, 4, 7, 6
Offset: 0

Views

Author

Eric W. Weisstein, Apr 23 2006

Keywords

Comments

The area enclosed by the two loops of the bow curve whose parametric equation is x^4 = x^2*y - y^3. - Amiram Eldar, Jun 09 2021

Examples

			0.07619047619047619047...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[8/105, 10, 100][[1]] (* Amiram Eldar, Jun 09 2021 *)

Formula

Equals 10*(A021025-4/100). - R. J. Mathar, Sep 02 2013
Showing 1-3 of 3 results.