cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022011 Initial members of prime octuplets (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26).

Original entry on oeis.org

11, 15760091, 25658441, 93625991, 182403491, 226449521, 661972301, 910935911, 1042090781, 1071322781, 1170221861, 1394025161, 1459270271, 1712750771, 1742638811, 1935587651, 2048038451, 2397437501, 2799645461
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 11 (modulo 210). - Matt C. Anderson, May 26 2015

References

  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 197.
  • Martin Gardner, Patterns in primes are a clue to the strong law of small numbers, Mathematical Games column, Scientific American, (December, 1980), pp. 20ff.

Crossrefs

A065706 is the union of A022011, A022012 and A022013.
A346996(n) = a(10^n).

Programs

  • Magma
    [p: p in PrimesUpTo(4*10^8) | forall{p+r: r in [2,6,8,12,18,20,26] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015
    
  • Mathematica
    Select[Prime[Range[2 10^9]], Union[PrimeQ[# + {2, 6, 8, 12, 18, 20, 26}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)
  • PARI
    forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+12) && isprime(p+18) && isprime(p+20) && isprime(p+26), print1(p", "))) \\ Altug Alkan, Oct 01 2015
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e10, 2,6,8,12,18,20,26); # Dana Jacobsen, Sep 30 2015
    

Extensions

Reference provided by Harvey P. Dale, May 10 2013
More terms from Matt C. Anderson, Dec 06 2013