A022090 Fibonacci sequence beginning 0, 7.
0, 7, 7, 14, 21, 35, 56, 91, 147, 238, 385, 623, 1008, 1631, 2639, 4270, 6909, 11179, 18088, 29267, 47355, 76622, 123977, 200599, 324576, 525175, 849751, 1374926, 2224677, 3599603, 5824280, 9423883, 15248163, 24672046, 39920209, 64592255, 104512464
Offset: 0
References
- Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, p. 15.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- William P. Thurston, The Eightfold Way: A Mathematical Sculpture by Helaman Ferguson, in: The Eightfold Way: The Beauty of the Klein Quartic (ed. Silvio Levy), Cambridge University Press, New York, 1999, pp. 1-7.
- Eric Weisstein's World of Mathematics, Klein Quartic.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
A022090:= func< n | 7*Fibonacci(n) >; [A022090(n): n in [0..40]]; // G. C. Greubel, Apr 10 2025
-
Mathematica
7*Fibonacci[Range[0,40]] (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
-
SageMath
def A022090(n): return 7*fibonacci(n) [A022090(n) for n in range(41)] # G. C. Greubel, Apr 10 2025
Formula
a(n) = round(((14*phi-7)/5) * phi^n), for n>3. - Thomas Baruchel, Sep 08 2004
a(n) = 7*Fibonacci(n) = Fibonacci(n+4) + Fibonacci(n-4) for n>3.
a(n) = A119457(n+5, n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 7*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
Comments