A022091 Fibonacci sequence beginning 0, 8.
0, 8, 8, 16, 24, 40, 64, 104, 168, 272, 440, 712, 1152, 1864, 3016, 4880, 7896, 12776, 20672, 33448, 54120, 87568, 141688, 229256, 370944, 600200, 971144, 1571344, 2542488, 4113832, 6656320, 10770152, 17426472, 28196624, 45623096, 73819720, 119442816
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
A022091:= func< n | 8*Fibonacci(n) >; [A022091(n): n in [0..40]]; // G. C. Greubel, Apr 13 2025
-
Mathematica
8*Fibonacci[Range[0,41]] (* Vladimir Joseph Stephan Orlovsky, Sep 17 2008; modified by G. C. Greubel, Apr 13 2025 *) LinearRecurrence[{1,1},{0,8},40] (* Harvey P. Dale, Jan 19 2018 *)
-
SageMath
def A022091(n): return 8*fibonacci(n) print([A022091(n) for n in range(41)]) # G. C. Greubel, Apr 13 2025
Formula
a(n) = round( (16phi-8)/5 phi^n) (works for n>4). - Thomas Baruchel, Sep 08 2004
a(n) = 8*F(n) = F(n+4) + F(n) + F(n-4) for n>3, where F=A000045.
G.f.: 8*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008