cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022097 Fibonacci sequence beginning 1, 7.

Original entry on oeis.org

1, 7, 8, 15, 23, 38, 61, 99, 160, 259, 419, 678, 1097, 1775, 2872, 4647, 7519, 12166, 19685, 31851, 51536, 83387, 134923, 218310, 353233, 571543, 924776, 1496319, 2421095, 3917414, 6338509, 10255923, 16594432, 26850355, 43444787, 70295142, 113739929
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(7;n-1-k,k) with n>=1, a(-1)=6. These are the SW-NE diagonals in P(7;n,k), the (7,1) Pascal triangle A093564. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (perhaps the same as A001175). - R. J. Mathar, Aug 10 2012
For n >= 1, a(n) is the number of edge covers of the tadpole graph T_{4,n-1} with T_{4,0} interpreted as just the cycle graph C_4. Example: If n=2, we have C_4 and path P_1 joined by a bridge. This is the cycle with a pendant and has 7 edge covers. - Feryal Alayont, Sep 22 2024

Crossrefs

Programs

  • Magma
    a0:=1; a1:=7; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
    
  • Mathematica
    First /@ NestList[{Last@ #, Total@ #} &, {1, 7}, 36] (* or *)
    CoefficientList[Series[(1 + 6 x)/(1 - x - x^2), {x, 0, 36}], x] (* Michael De Vlieger, Feb 20 2017 *)
    LinearRecurrence[{1,1},{1,7},40] (* Harvey P. Dale, May 17 2018 *)
  • PARI
    a(n)=([0,1; 1,1]^n*[1;7])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • SageMath
    A022097=BinaryRecurrenceSequence(1,1,1,7)
    print([A022097(n) for n in range(41)]) # G. C. Greubel, Jun 03 2025

Formula

a(n) = a(n-1) + a(n-2) for n>=2, a(0)=1, a(1)=7, a(-1):=6.
G.f.: (1+6*x)/(1-x-x^2).
a(n) = A109754(6, n+1).
a(n) = A118654(3, n).
a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(-13 + sqrt(5)) + (1 + sqrt(5))^n*(13 + sqrt(5))))/sqrt(5). - Herbert Kociemba
a(n) = 6*A000045(n) + A000045(n+1). - R. J. Mathar, Aug 10 2012
a(n) = 8*A000045(n) - A000045(n-2). - Bruno Berselli, Feb 20 2017
From Aamen Muharram, Aug 05 2022: (Start)
a(n) = F(n-4) + F(n-1) + F(n+4),
a(n) = F(n) + F(n+4) - F(n-3),
where F(n) = A000045(n) is the Fibonacci numbers. (End)