A022097 Fibonacci sequence beginning 1, 7.
1, 7, 8, 15, 23, 38, 61, 99, 160, 259, 419, 678, 1097, 1775, 2872, 4647, 7519, 12166, 19685, 31851, 51536, 83387, 134923, 218310, 353233, 571543, 924776, 1496319, 2421095, 3917414, 6338509, 10255923, 16594432, 26850355, 43444787, 70295142, 113739929
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Tadpole Graph.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a0:=1; a1:=7; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
Mathematica
First /@ NestList[{Last@ #, Total@ #} &, {1, 7}, 36] (* or *) CoefficientList[Series[(1 + 6 x)/(1 - x - x^2), {x, 0, 36}], x] (* Michael De Vlieger, Feb 20 2017 *) LinearRecurrence[{1,1},{1,7},40] (* Harvey P. Dale, May 17 2018 *)
-
PARI
a(n)=([0,1; 1,1]^n*[1;7])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
SageMath
A022097=BinaryRecurrenceSequence(1,1,1,7) print([A022097(n) for n in range(41)]) # G. C. Greubel, Jun 03 2025
Formula
a(n) = a(n-1) + a(n-2) for n>=2, a(0)=1, a(1)=7, a(-1):=6.
G.f.: (1+6*x)/(1-x-x^2).
a(n) = A109754(6, n+1).
a(n) = A118654(3, n).
a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(-13 + sqrt(5)) + (1 + sqrt(5))^n*(13 + sqrt(5))))/sqrt(5). - Herbert Kociemba
From Aamen Muharram, Aug 05 2022: (Start)
a(n) = F(n-4) + F(n-1) + F(n+4),
a(n) = F(n) + F(n+4) - F(n-3),
where F(n) = A000045(n) is the Fibonacci numbers. (End)
Comments