cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022100 Fibonacci sequence beginning 1, 10.

Original entry on oeis.org

1, 10, 11, 21, 32, 53, 85, 138, 223, 361, 584, 945, 1529, 2474, 4003, 6477, 10480, 16957, 27437, 44394, 71831, 116225, 188056, 304281, 492337, 796618, 1288955, 2085573, 3374528, 5460101, 8834629, 14294730, 23129359, 37424089, 60553448, 97977537, 158530985
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(10; n-1-k, k), n >= 1, with a(-1)=9. These are the SW-NE diagonals in P(10; n, k), the (10,1) Pascal triangle A093645. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
In general, for b Fibonacci sequence beginning with 1, h, we have:
b(n) = (2^(-1-n)*((1 - sqrt(5))^n*(1 + sqrt(5) - 2*h) + (1 + sqrt(5))^n*(-1 + sqrt(5) + 2*h)))/sqrt(5). - Herbert Kociemba, Dec 18 2011

Crossrefs

Cf. A000045.
a(n) = A109754(9, n+1) = A101220(9, 0, n+1).

Programs

  • Magma
    a0:=1; a1:=10; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
  • Mathematica
    LinearRecurrence[{1,1},{1,10},40] (* Harvey P. Dale, May 17 2017 *)

Formula

a(n) = a(n-1) + a(n-2) for n >= 2, a(0)=1, a(1)=10, a(-1):=9.
G.f.: (1 + 9*x)/(1 - x - x^2).
a(n) = Sum_{k=0..n} Fibonacci(n-k+1)*(9*binomial(1, k) - 8*binomial(0, k)). - Paul Barry, May 05 2005
a(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) + (9/2)*((1+sqrt(5))^(n-1) - (1-sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). Offset 1. a(3)=11. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
From Bruno Berselli, Feb 20 2017: (Start)
a(n) = 9*A000045(n) + A000045(n+1).
a(n) = 11*A000045(n) - A000045(n-2). (End)