A101220
a(n) = Sum_{k=0..n} Fibonacci(n-k)*n^k.
Original entry on oeis.org
0, 1, 3, 14, 91, 820, 9650, 140601, 2440317, 49109632, 1123595495, 28792920872, 816742025772, 25402428294801, 859492240650847, 31427791175659690, 1234928473553777403, 51893300561135516404, 2322083099525697299278
Offset: 0
a(1,3,3) = 6 because a(1,3,0) = 0, a(1,3,1) = 1, a(1,3,2) = 2 and 4*2 - 2*1 - 3*0 = 6.
a(1, 2, k+1) - a(1, 2, k) =
A099036(k).
a(3, 2, k+1) - a(3, 2, k) =
A104004(k).
a(4, 2, k+1) - a(4, 2, k) =
A027973(k).
a(1, 3, k+1) - a(1, 3, k) =
A099159(k).
a(2^i-2, 0, k+1) =
A118654(i, k), for i > 0.
Sequences of the form a(n, 0, k):
A000045(k+1) (n=1),
A000032(k) (n=2),
A000285(k-1) (n=3),
A022095(k-1) (n=4),
A022096(k-1) (n=5),
A022097(k-1) (n=6),
A022098(k-1) (n=7),
A022099(k-1) (n=8),
A022100(k-1) (n=9),
A022101(k-1) (n=10),
A022102(k-1) (n=11),
A022103(k-1) (n=12),
A022104(k-1) (n=13),
A022105(k-1) (n=14),
A022106(k-1) (n=15),
A022107(k-1) (n=16),
A022108(k-1) (n=17),
A022109(k-1) (n=18),
A022110(k-1) (n=19),
A088209(k-2) (n=k-2),
A007502(k) (n=k-1),
A094588(k) (n=k).
Sequences of the form a(4, n, k):
A053311(k-1) (n=1),
A027974(k-1) (n=2).
-
A101220:= func< n | (&+[n^k*Fibonacci(n-k): k in [0..n]]) >;
[A101220(n): n in [0..30]]; // G. C. Greubel, Jun 01 2025
-
Join[{0}, Table[Sum[Fibonacci[n-k]*n^k, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 03 2021 *)
-
a(n)=sum(k=0,n,fibonacci(n-k)*n^k) \\ Joerg Arndt, Jan 03 2021
-
def A101220(n): return sum(n^k*fibonacci(n-k) for k in range(n+1))
print([A101220(n) for n in range(31)]) # G. C. Greubel, Jun 01 2025
A093645
(10,1) Pascal triangle.
Original entry on oeis.org
1, 10, 1, 10, 11, 1, 10, 21, 12, 1, 10, 31, 33, 13, 1, 10, 41, 64, 46, 14, 1, 10, 51, 105, 110, 60, 15, 1, 10, 61, 156, 215, 170, 75, 16, 1, 10, 71, 217, 371, 385, 245, 91, 17, 1, 10, 81, 288, 588, 756, 630, 336, 108, 18, 1, 10, 91, 369, 876, 1344, 1386, 966, 444, 126, 19, 1
Offset: 0
Triangle begins
1;
10, 1;
10, 11, 1;
10, 21, 12, 1;
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch. 5, pp. 109-122.
Row sums: 1 for n=0 and
A005015(n-1), n >= 1, alternating row sums are 1 for n=0, 9 for n=2 and 0 otherwise.
-
a093645 n k = a093645_tabl !! n !! k
a093645_row n = a093645_tabl !! n
a093645_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [10, 1]
-- Reinhard Zumkeller, Aug 31 2014
-
t[0, 0] = 1; t[n_, k_] := Binomial[n, k] + 9*Binomial[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Philippe Deléham *)
A109754
Matrix defined by: a(i,0) = 0, a(i,j) = i*Fibonacci(j-1) + Fibonacci(j), for j > 0; read by ascending antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 3, 0, 1, 4, 4, 5, 5, 0, 1, 5, 5, 7, 8, 8, 0, 1, 6, 6, 9, 11, 13, 13, 0, 1, 7, 7, 11, 14, 18, 21, 21, 0, 1, 8, 8, 13, 17, 23, 29, 34, 34, 0, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 0, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
Offset: 0
Table starts:
[0] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
[1] 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
[2] 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, ...
[3] 0, 1, 4, 5, 9, 14, 23, 37, 60, 97, ...
[4] 0, 1, 5, 6, 11, 17, 28, 45, 73, 118, ...
[5] 0, 1, 6, 7, 13, 20, 33, 53, 86, 139, ...
[6] 0, 1, 7, 8, 15, 23, 38, 61, 99, 160, ...
[7] 0, 1, 8, 9, 17, 26, 43, 69, 112, 181, ...
[8] 0, 1, 9, 10, 19, 29, 48, 77, 125, 202, ...
[9] 0, 1, 10, 11, 21, 32, 53, 85, 138, 223, ...
Rows:
A000045(j);
A000045(j+1), for j > 0;
A000032(j), for j > 0;
A000285(j-1), for j > 0;
A022095(j-1), for j > 0;
A022096(j-1), for j > 0;
A022097(j-1), for j > 0. Diagonals: a(i, i) =
A094588(i); a(i, i+1) =
A007502(i+1); a(i, i+2) =
A088209(i); Sum[a(i-j, j), {j=0...i}] =
A104161(i). a(i, j) =
A101220(i, 0, j).
Rows 7 - 19:
A022098(j-1), for j > 0;
A022099(j-1), for j > 0;
A022100(j-1), for j > 0;
A022101(j-1), for j > 0;
A022102(j-1), for j > 0;
A022103(j-1), for j > 0;
A022104(j-1), for j > 0;
A022106(j-1), for j > 0;
A022107(j-1), for j > 0;
A022108(j-1), for j > 0;
A022109(j-1), for j > 0;
A022110(j-1), for j > 0.
a(2^i-2, j+1) =
A118654(i, j), for i > 0.
-
A := (n, k) -> ifelse(k = 0, 0,
n*combinat:-fibonacci(k-1) + combinat:-fibonacci(k)):
seq(seq(A(n - k, k), k = 0..n), n = 0..6); # Peter Luschny, May 28 2022
-
T[n_, 0]:= 0; T[n_, 1]:= 1; T[n_, 2]:= n - 1; T[n_, 3]:= n - 1; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Jan 07 2017 *)
A127830
a(n) = Sum_{k=0..n} (binomial(floor(k/2),n-k) mod 2).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 3, 3, 3, 2, 2, 3, 2, 3, 5, 5, 4, 4, 5, 4, 3, 3, 3, 4, 4, 3, 4, 5, 3, 5, 8, 8, 7, 6, 7, 7, 5, 6, 8, 7, 6, 5, 5, 5, 4, 4, 5, 6, 5, 5, 7, 6, 4, 5, 6, 7, 7, 5, 6, 8, 5, 8, 13, 13, 11, 10, 12, 11, 8, 9, 11, 11, 10, 8, 9, 10, 7, 9, 13, 12
Offset: 0
Cf.:
A000045 (p=0),
A000204 (p=7),
A001060 (p=13),
A000285 (p=14),
A022095 (p=16),
A022120 (p=24),
A022121 (p=25),
A022113 (p=28),
A022096 (p=30),
A022097 (p=31),
A022098 (p=32),
A022130 (p=44),
A022137 (p=48),
A022138 (p=49),
A022122 (p=52),
A022114 (p=53),
A022123 (p=56),
A022115 (p=60),
A022100 (p=62),
A022101 (p=63),
A022103 (p=64),
A022136 (p=79),
A022388 (p=80),
A022389 (p=88). -
Johannes W. Meijer, Jun 05 2011
-
A127830 := proc(n) local k: option remember: add(binomial(floor(k/2), n-k) mod 2, k=0..n) end: seq(A127830(n), n=0..80); # Johannes W. Meijer, Jun 05 2011
-
Table[Sum[Mod[Binomial[Floor[k/2],n-k],2],{k,0,n}],{n,0,80}] (* James C. McMahon, Jan 04 2025 *)
-
def A127830(n): return sum(not ~(k>>1)&n-k for k in range(n+1)) # Chai Wah Wu, Jul 29 2025
A353595
Array read by ascending antidiagonals. Generalized Fibonacci numbers F(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)) / (psi - phi) where phi = (1+sqrt(5))/2 and psi = (1-sqrt(5))/2. F(n, k) for n >= 0 and k >= 0.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 3, 3, 3, 5, 1, 4, 4, 5, 5, 6, 1, 5, 5, 7, 8, 8, 7, 1, 6, 6, 9, 11, 13, 13, 8, 1, 7, 7, 11, 14, 18, 21, 21, 9, 1, 8, 8, 13, 17, 23, 29, 34, 34, 10, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 11, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
Offset: 0
Array starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
--------------------------------------------------------
[0] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... A000045
[1] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... A000045 (shifted once)
[2] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032
[3] 3, 1, 4, 5, 9, 14, 23, 37, 60, 97, ... A104449
[4] 4, 1, 5, 6, 11, 17, 28, 45, 73, 118, ... [4] + A022095
[5] 5, 1, 6, 7, 13, 20, 33, 53, 86, 139, ... [5] + A022096
[6] 6, 1, 7, 8, 15, 23, 38, 61, 99, 160, ... [6] + A022097
[7] 7, 1, 8, 9, 17, 26, 43, 69, 112, 181, ... [7] + A022098
[8] 8, 1, 9, 10, 19, 29, 48, 77, 125, 202, ... [8] + A022099
[9] 9, 1, 10, 11, 21, 32, 53, 85, 138, 223, ... [9] + A022100
-
function fibrec(n::Int)
n == 0 && return (BigInt(0), BigInt(1))
a, b = fibrec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
function Fibonacci(n::Int, k::Int)
k == 0 && return BigInt(n)
k == 1 && return BigInt(1)
k < 0 && return (-1)^(k-1)*Fibonacci(-n - 1, 2 - k)
a, b = fibrec(k - 1)
a*n + b
end
for n in -6:6
println([n], [Fibonacci(n, k) for k in -6:6])
end
-
f := n -> combinat:-fibonacci(n): F := (n, k) -> n*f(k - 1) + f(k):
seq(seq(F(n - k, k), k = 0..n), n = 0..11);
# The next implementation is for illustration only but is not recommended
# as it relies on floating point arithmetic. Illustrates the case n,k < 0.
phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
F := (n, k) -> (psi^(k-1)*(psi + n) - phi^(k-1)*(phi + n)) / (psi - phi):
for n from -6 to 6 do lprint(seq(simplify(F(n, k)), k = -6..6)) od;
-
(* Works also for n < 0 and k < 0. Uses a remark from Bill Gosper. *)
c := I*ArcSinh[1/2] - Pi/2;
F[n_, k_] := (n Sin[(k - 1) c] - I Sin[k c]) / (I^k Sqrt[5/4]);
Table[Simplify[F[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
A022372
Fibonacci sequence beginning 2, 20.
Original entry on oeis.org
2, 20, 22, 42, 64, 106, 170, 276, 446, 722, 1168, 1890, 3058, 4948, 8006, 12954, 20960, 33914, 54874, 88788, 143662, 232450, 376112, 608562, 984674, 1593236, 2577910, 4171146, 6749056, 10920202
Offset: 0
-
a={};b=2;c=20;AppendTo[a, b];AppendTo[a, c];Do[b=b+c;AppendTo[a, b];c=b+c;AppendTo[a, c], {n, 4!}];a (* Vladimir Joseph Stephan Orlovsky, Sep 18 2008 *)
Table[2*(Fibonacci[n + 2] + 8*Fibonacci[n]), {n,0,50}] (* or *) LinearRecurrence[{1,1}, {2,20}, 50] (* G. C. Greubel, Aug 27 2017 *)
-
for(n=0,50, print1(2*(fibonacci(n+2) + 8*fibonacci(n)), ", ")) \\ G. C. Greubel, Aug 27 2017
A022314
a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0, a(1) = 9.
Original entry on oeis.org
0, 9, 10, 20, 31, 52, 84, 137, 222, 360, 583, 944, 1528, 2473, 4002, 6476, 10479, 16956, 27436, 44393, 71830, 116224, 188055, 304280, 492336, 796617, 1288954, 2085572, 3374527, 5460100, 8834628, 14294729, 23129358, 37424088, 60553447, 97977536, 158530984
Offset: 0
G.f. = 9*x + 10*x^2 + 20*x^3 + 31*x^4 + 52*x^5 + 84*x^6 + 137*x^7 + 222*x^8 + ...
-
LinearRecurrence[{2, 0, -1}, {0, 9, 10}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
a[ n_] := 9 Fibonacci[n] + Fibonacci[n + 1] - 1; (* Michael Somos, Nov 21 2016 *)
-
concat(0, Vec(-x*(-9+8*x) / ( (x-1)*(x^2+x-1) ) + O(x^30))) \\ Michel Marcus, Nov 20 2016
{a(n) = 9*fibonacci(n) + fibonacci(n+1) - 1}; /* Michael Somos, Nov 21 2016 */
Original entry on oeis.org
1, 10, 101, 1011, 10112, 101123, 1011235, 10112358, 101123593, 1011235951, 10112359544, 101123595495, 1011235955039, 10112359550534, 101123595505573, 1011235955056107, 10112359550561680, 101123595505617787, 1011235955056179467, 10112359550561797254
Offset: 1
From _R. J. Mathar_, Aug 19 2010: (Start)
One example is a(5), the sum of numbers in parentheses:
1;
1, 10;
(1), 11, 100;
1, 12, (111) ; 1000;;
1, 13, 123 ; 1111, (10000); (End)
Showing 1-8 of 8 results.
Comments