A022191 Gaussian binomial coefficients [n, 8] for q = 2.
1, 511, 174251, 50955971, 13910980083, 3675639930963, 955841412523283, 246614610741341843, 63379954960524853651, 16256896431763117598611, 4165817792093527797314451, 1066968301301093995246996371, 273210326382611632738979052435
Offset: 8
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 8..200
Crossrefs
Programs
-
Magma
r:=8; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
-
Mathematica
Table[QBinomial[n, 8, 2], {n, 8, 40}] (* Vincenzo Librandi, Aug 03 2016 *)
-
PARI
r=8; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
-
Sage
[gaussian_binomial(n,8,2) for n in range(8,20)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..8} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
G.f. with an offset of 0: exp( Sum_{n >= 1} b(9*n)/b(n)*x^n/n ) = 1 + 511*x +174251*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 01 2025
Extensions
Offset changed by Vincenzo Librandi, Aug 03 2016