cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022193 Gaussian binomial coefficients [n, 10] for q = 2.

Original entry on oeis.org

1, 2047, 2794155, 3269560515, 3571013994483, 3774561792168531, 3926442969043883795, 4052305562169692070035, 4165817792093527797314451, 4274137206973266943778085267, 4380990637147598617372537398675
Offset: 10

Views

Author

Keywords

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Magma
    r:=10; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
    
  • Mathematica
    Table[QBinomial[n, 10, 2], {n, 10, 40}] (* Vincenzo Librandi, Aug 03 2016 *)
  • PARI
    r=10; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
  • Sage
    [gaussian_binomial(n,10,2) for n in range(10,21)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(11*n)/b(n)*x^n/n ) = 1 + 2047*x + 2794155*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 03 2025