cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022220 Gaussian binomial coefficients [ n,2 ] for q = 6.

Original entry on oeis.org

1, 43, 1591, 57535, 2072815, 74630671, 2686760143, 96723701071, 3482055254095, 125354001240655, 4512744117222991, 162458788655384143, 5848516394205967951, 210546590207087679055, 7579677247549193442895, 272868380912335185925711
Offset: 2

Views

Author

Keywords

Programs

  • Magma
    r:=2; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 10 2016
    
  • Mathematica
    Table[QBinomial[n, 2, 6], {n, 2, 20}] (* Vincenzo Librandi, Aug 10 2016 *)
  • PARI
    r=2; q=6; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 07 2018
  • Sage
    [gaussian_binomial(n,2,6) for n in range(2,17)] # Zerinvary Lajos, May 28 2009
    

Formula

G.f.: x^2/((1-x)*(1-6*x)*(1-36*x)).
a(n) = Product_{i=1..2} (6^(n-i+1)-1)/(6^i-1), by definition. - Vincenzo Librandi, Aug 16 2016

Extensions

Offset changed by Vincenzo Librandi, Aug 10 2016