A022231 Gaussian binomial coefficients [ n,2 ] for q = 7.
1, 57, 2850, 140050, 6865251, 336416907, 16484565700, 807744680100, 39579496050501, 1939395353553757, 95030372653688550, 4656488262337620150, 228167924870691555751, 11180228318776923410607, 547831187620860507371400
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..200 (first 591 terms from Todd Silvestri)
- Index entries for linear recurrences with constant coefficients, signature (57, -399, 343).
Programs
-
Magma
r:=2; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 12 2016
-
Maple
seq((7^(n+1)-1)*(7^(n+2)-1)/288, n=0..30); # Robert Israel, Dec 16 2014
-
Mathematica
a[n_Integer/;n>=0]:=(7^(n+1)-1)*(7^(n+2)-1)/288 (* Todd Silvestri, Dec 16 2014 *) Table[QBinomial[n, 2, 7], {n, 2, 20}] (* Vincenzo Librandi, Aug 12 2016 *)
-
PARI
Vec(1/((1-x)*(1-7*x)*(1-49*x)) + O(x^30)) \\ Michel Marcus, Dec 16 2014
-
PARI
r=2; q=7; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
-
PARI
lista(nn, na=2, q=7) = qp=matpascal(nn+q, q); vector(nn, n, qp[n+na, n]); \\ Michel Marcus, Jun 13 2018
-
Sage
[gaussian_binomial(n,2,7) for n in range(2,17)] # Zerinvary Lajos, May 28 2009
Formula
G.f.: x^2/((1-x)*(1-7*x)*(1-49*x)).
a(n) = (7^(n+1)-1)*(7^(n+2)-1)/288. - Todd Silvestri, Dec 16 2014
E.g.f.: (343*exp(49*x)-56*exp(7*x)+exp(x))/288. - Robert Israel, Dec 16 2014
a(n+3) = 57*a(n+2) - 399*a(n+1) + 343*a(n). - Robert Israel, Dec 16 2014
Extensions
Offset changed by Vincenzo Librandi, Aug 12 2016