A022268 a(n) = n*(11*n - 1)/2.
0, 5, 21, 48, 86, 135, 195, 266, 348, 441, 545, 660, 786, 923, 1071, 1230, 1400, 1581, 1773, 1976, 2190, 2415, 2651, 2898, 3156, 3425, 3705, 3996, 4298, 4611, 4935, 5270, 5616, 5973, 6341, 6720, 7110, 7511, 7923, 8346, 8780, 9225, 9681, 10148, 10626, 11115
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(11*n - 1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 04 2016
-
Maple
A022268:=n->n*(11*n - 1)/2: seq(A022268(n), n=0..50); # Wesley Ivan Hurt, Dec 04 2016
-
Mathematica
Table[n (11 n - 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 14 2016 *)
-
PARI
a(n)=n*(11*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: x*(5 + 6*x)/(1-x)^3. - Bruno Berselli, Feb 11 2011
a(n) = 11*n + a(n-1) - 6 for n>0. - Vincenzo Librandi, Aug 04 2010
From Wesley Ivan Hurt, Dec 04 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = (1/9) * Sum_{i=n..10n-1} i. (End)
E.g.f.: (1/2)*(11*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
Comments