A022274 a(n) = n*(17*n - 1)/2.
0, 8, 33, 75, 134, 210, 303, 413, 540, 684, 845, 1023, 1218, 1430, 1659, 1905, 2168, 2448, 2745, 3059, 3390, 3738, 4103, 4485, 4884, 5300, 5733, 6183, 6650, 7134, 7635, 8153, 8688, 9240, 9809, 10395, 10998, 11618, 12255, 12909, 13580, 14268, 14973
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n*(17*n - 1)/2: n in [0..45]]; // Vincenzo Librandi, Mar 31 2015
-
Mathematica
Table[n (17 n - 1)/2, {n, 0, 40}] (* Bruno Berselli, Mar 12 2015 *) CoefficientList[Series[x (8 + 9 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 31 2015 *) LinearRecurrence[{3, -3, 1}, {0, 8,3 3}, 50] (* Harvey P. Dale, Feb 18 2016 *)
-
PARI
a(n)=n*(17*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 17*n + a(n-1) - 9 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
From Vincenzo Librandi, Mar 31 2015: (Start)
G.f.: x*(8 + 9*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
a(n) = A022275(-n). - Bruno Berselli, Mar 31 2015
E.g.f.: (x/2)*(17*x + 16)*exp(x). - G. C. Greubel, Aug 23 2017
Extensions
More terms from Vincenzo Librandi, Mar 31 2015