A022280 a(n) = n*(23*n - 1)/2.
0, 11, 45, 102, 182, 285, 411, 560, 732, 927, 1145, 1386, 1650, 1937, 2247, 2580, 2936, 3315, 3717, 4142, 4590, 5061, 5555, 6072, 6612, 7175, 7761, 8370, 9002, 9657, 10335, 11036, 11760, 12507, 13277
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[n (23 n - 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 14 2016 *) LinearRecurrence[{3,-3,1},{0,11,45},40] (* Harvey P. Dale, Nov 09 2024 *)
-
PARI
a(n)=n*(23*n-1)/2 \\ Charles R Greathouse IV, Jun 16 2017
Formula
a(n) = 23*n + a(n-1) - 12 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
From Colin Barker, Jun 05 2012: (Start)
G.f.: x*(11 + 12*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: (x/2)*(23*x + 22)*exp(x). - G. C. Greubel, Aug 23 2017