A022307 Number of distinct prime factors of n-th Fibonacci number.
0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 3, 2, 1, 4, 2, 2, 4, 4, 1, 5, 2, 4, 3, 2, 3, 5, 3, 3, 3, 6, 2, 5, 1, 5, 5, 3, 1, 6, 3, 5, 3, 4, 2, 6, 4, 6, 5, 3, 2, 8, 2, 3, 5, 6, 3, 5, 3, 5, 5, 7, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 3, 1, 9, 4, 3, 4, 9, 2, 10, 4, 6, 4, 2, 6, 9, 4, 5, 6
Offset: 0
Keywords
References
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.
Links
- Max Alekseyev, Table of n, a(n) for n = 0..1422 (terms 0..1000 and 1001..1408 from T. D. Noe and Amiram Eldar, respectively).
- Blair Kelly, Fibonacci and Lucas Factorizations
- J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 118. No. 2, (1985), 449-461.
- J. C. Lagarias, Errata to: The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 162, No. 2, (1994), 393-396.
- Hisanori Mishima, WIFC (World Integer Factorization Center), Fibonacci numbers (n = 1 to 100, n = 101 to 200, n = 201 to 300, n = 301 to 400, n = 401 to 480).
- Pieter Moree, Counting Divisors of Lucas Numbers, Pacific J. Math, Vol. 186, No. 2, 1998, pp. 267-284.
- Eric Weisstein's World of Mathematics, Fibonacci Number
Crossrefs
Programs
-
Haskell
a022307 n = if n == 0 then 0 else a001221 $ a000045 n -- Reinhard Zumkeller, Aug 30 2014
-
Magma
[0] cat [#PrimeDivisors(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
-
Mathematica
Table[Length[FactorInteger[Fibonacci[n]]], {n, 150}]
-
PARI
a(n)=omega(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
Comments