cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022307 Number of distinct prime factors of n-th Fibonacci number.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 3, 2, 1, 4, 2, 2, 4, 4, 1, 5, 2, 4, 3, 2, 3, 5, 3, 3, 3, 6, 2, 5, 1, 5, 5, 3, 1, 6, 3, 5, 3, 4, 2, 6, 4, 6, 5, 3, 2, 8, 2, 3, 5, 6, 3, 5, 3, 5, 5, 7, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 3, 1, 9, 4, 3, 4, 9, 2, 10, 4, 6, 4, 2, 6, 9, 4, 5, 6
Offset: 0

Views

Author

Keywords

Comments

Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. Exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. - Jonathan Vos Post, Dec 06 2006
First occurrence of k: 0, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, ..., . - Robert G. Wilson v, Dec 10 2006 [Other than 0, this is sequence A060320. - Jon E. Schoenfield, Dec 30 2016]
Row lengths of table A060442. - Reinhard Zumkeller, Aug 30 2014
If k properly divides n then a(n) >= a(k) + 1, except for a(6) = a(3) = 1. - Robert Israel, Aug 18 2015

References

  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.

Crossrefs

Cf. A038575 (number of prime factors, counting multiplicity), A086597 (number of primitive prime factors).
Cf. A060442, A086598 (omega(Lucas(n))).
Cf. A060320. - Jon E. Schoenfield, Dec 30 2016

Programs

  • Haskell
    a022307 n = if n == 0 then 0 else a001221 $ a000045 n
    -- Reinhard Zumkeller, Aug 30 2014
    
  • Magma
    [0] cat [#PrimeDivisors(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
  • Mathematica
    Table[Length[FactorInteger[Fibonacci[n]]], {n, 150}]
  • PARI
    a(n)=omega(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

a(n) = Sum{d|n} A086597(d), Mobius transform of A086597.
a(n) = A001221(A000045(n)) = omega(F(n)). - Jonathan Vos Post, Dec 06 2006