A022342 Integers with "even" Zeckendorf expansions (do not end with ...+F_2 = ...+1) (the Fibonacci-even numbers); also, apart from first term, a(n) = Fibonacci successor to n-1.
0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 24, 26, 28, 29, 31, 32, 34, 36, 37, 39, 41, 42, 44, 45, 47, 49, 50, 52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 105, 107
Offset: 1
Examples
The successors to 1, 2, 3, 4=3+1 are 2, 3, 5, 7=5+2.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
- E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Joerg Arndt, Matters Computational (The Fxtbook)
- A. J. Macfarlane, On the fibbinary numbers and the Wythoff array, arXiv:2405.18128 [math.CO], 2024. See pages 3, 6.
- M. Rigo, P. Salimov, and E. Vandomme, Some Properties of Abelian Return Words, Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
- Jeffrey Shallit, The Hurt-Sada Array and Zeckendorf Representations, arXiv:2501.08823 [math.NT], 2025. See p. 2.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Classic Sequences
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Jiemeng Zhang, Zhixiong Wen, and Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), Article P2.52.
Crossrefs
Positions of 0's in A003849.
Complement of A003622.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Programs
-
Haskell
a022342 n = a022342_list !! (n-1) a022342_list = filter ((notElem 1) . a035516_row) [0..] -- Reinhard Zumkeller, Mar 10 2013
-
Magma
[Floor(n*(Sqrt(5)+1)/2)-1: n in [1..100]]; // Vincenzo Librandi, Feb 16 2015
-
Maple
A022342 := proc(n) local g; g := (1+sqrt(5))/2 ; floor(n*g)-1 ; end proc: # R. J. Mathar, Aug 04 2013
-
Mathematica
With[{t=GoldenRatio^2},Table[Floor[n*t]-n-1,{n,70}]] (* Harvey P. Dale, Aug 08 2012 *)
-
PARI
a(n)=floor(n*(sqrt(5)+1)/2)-1
-
PARI
a(n)=(sqrtint(5*n^2)+n-2)\2 \\ Charles R Greathouse IV, Feb 27 2014
-
Python
from math import isqrt def A022342(n): return (n+isqrt(5*n**2)>>1)-1 # Chai Wah Wu, Aug 17 2022
Formula
a(n) = floor(n*phi^2) - n - 1 = floor(n*phi) - 1 = A000201(n) - 1, where phi is the golden ratio.
a(n) = A003622(n) - n. - Philippe Deléham, May 03 2004
For n > 1: A035612(a(n)) > 1. - Reinhard Zumkeller, Feb 03 2015
a(n) = A000201(n) - 1. First differences are given in A014675 (or A001468, ignoring its first term). - M. F. Hasler, Oct 13 2017
a(n) = a(n-1) + 1 + A005614(n-2) for n > 1; also a(n) = a(n-1) + A014675(n-2) = a(n-1) + A001468(n-1). - A.H.M. Smeets, Apr 26 2024
Extensions
Name edited by Peter Munn, Dec 07 2021
Comments