A022389 Fibonacci sequence beginning 7, 15.
7, 15, 22, 37, 59, 96, 155, 251, 406, 657, 1063, 1720, 2783, 4503, 7286, 11789, 19075, 30864, 49939, 80803, 130742, 211545, 342287, 553832, 896119, 1449951, 2346070, 3796021, 6142091, 9938112, 16080203, 26018315, 42098518, 68116833, 110215351, 178332184
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Crossrefs
Cf. A000032.
Programs
-
GAP
List([0..35],n->7*Fibonacci(n+2)+Fibonacci(n)); # Muniru A Asiru, Mar 03 2018
-
Magma
[7*Fibonacci(n+2) + Fibonacci(n): n in [0..50]]; // G. C. Greubel, Mar 02 2018
-
Maple
with(combinat,fibonacci): seq(7*fibonacci(n+2)+fibonacci(n),n=0..35); # Muniru A Asiru, Mar 03 2018
-
Mathematica
LinearRecurrence[{1,1},{7,15},40] (* Harvey P. Dale, Aug 27 2013 *) Table[7*Fibonacci[n+2] + Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 02 2018 *)
-
PARI
for(n=0, 50, print1(7*fibonacci(n+2) + fibonacci(n), ", ")) \\ G. C. Greubel, Mar 02 2018
Formula
G.f.: (7+8*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 7*Fibonacci(n+2) + Fibonacci(n) = 7*Fibonacci(n-1) + 15*Fibonacci(n). - G. C. Greubel, Mar 02 2018
a(n) = Fibonacci(n+6) + Lucas(n-1). - Greg Dresden and Russ Zimmerman, Mar 03 2022