A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A199535 Clark Kimberling's even first column Stolarsky array read by antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 9, 10, 8, 18, 15, 17, 12, 13, 29, 24, 27, 19, 14, 21, 47, 39, 44, 31, 23, 16, 34, 76, 63, 71, 50, 37, 25, 20, 55, 123, 102, 115, 81, 60, 41, 33, 22, 89, 199, 165, 186, 131, 97, 66, 53, 35, 26, 144, 322, 267, 301, 212, 157, 107, 86, 57, 43, 28
Offset: 1
Comments
The rows of the array can be seen to have the form A(n, k) = p(n)*Fibonacci(k) + q(n)*Fibonacci(k+1) where p(n) is the sequence {0, 1, 3, 3, 3, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, ...}{n >= 1} and q(n) is the sequence {1, 3, 3, 7, 2, 9, 9, 13, 13, 17, 17, 19, 19, 23, 23, 25, ...}{n >= 1}. - G. C. Greubel, Jun 23 2022
Examples
The even first column stolarsky array (EFC array), northwest corner: 1......2.....3.....5.....8....13....21....34....55....89...144 ... A000045; 4......7....11....18....29....47....76...123...199...322...521 ... A000032; 6......9....15....24....39....63...102...165...267...432...699 ... A022086; 10....17....27....44....71...115...186...301...487...788..1275 ... A022120; 12....19....31....50....81...131...212...343...555...898..1453 ... A013655; 14....23....37....60....97...157...254...411...665..1076..1741 ... A000285; 16....25....41....66...107...173...280...453...733..1186..1919 ... A022113; 20....33....53....86...139...225...364...589...953..1542..2495 ... A022096; 22....35....57....92...149...241...390...631..1021..1652..2673 ... A022130; Antidiagonal rows (T(n, k)): 1; 2, 4; 3, 7, 6; 5, 11, 9, 10; 8, 18, 15, 17, 12; 13, 29, 24, 27, 19, 14; 21, 47, 39, 44, 31, 23, 16; 34, 76, 63, 71, 50, 37, 25, 20; 55, 123, 102, 115, 81, 60, 41, 33, 22;
Links
- Clark Kimberling, The first column of an interspersion, Fibonacci Quarterly 32 (1994), pp. 301-314.
Crossrefs
Formula
From G. C. Greubel, Jun 23 2022: (Start)
T(n, 1) = A000045(n+1).
T(n, 2) = A000032(n+1), n >= 2.
T(n, 4) = A022120(n-2), n >= 4.
T(n, 5) = A013655(n-1), n >= 5.
T(n, 6) = A000285(n-2), n >= 6.
T(n, 7) = A022113(n-4), n >= 7.
T(n, 8) = A022096(n-4), n >= 8.
T(n, 9) = A022130(n-6), n >= 9.
T(n, 10) = A022098(n-5), n >= 10.
T(n, 11) = A022095(n-7), n >= 11.
T(n, 12) = A022121(n-8), n >= 12.
T(n, 13) = A022388(n-10), n >= 13.
T(n, 14) = A022122(n-10), n >= 14.
T(n, 15) = A022097(n-10), n >= 15.
T(n, 16) = A022088(n-10), n >= 16.
T(n, 17) = A022390(n-14), n >= 17.
T(n, n) = A199536(n).
T(n, n-1) = A199537(n-1), n >= 2. (End)
Extensions
More terms added by G. C. Greubel, Jun 23 2022
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions