cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022406 a(0)=3, a(1)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.

Original entry on oeis.org

3, 7, 11, 19, 31, 51, 83, 135, 219, 355, 575, 931, 1507, 2439, 3947, 6387, 10335, 16723, 27059, 43783, 70843, 114627, 185471, 300099, 485571, 785671, 1271243, 2056915, 3328159, 5385075, 8713235, 14098311, 22811547, 36909859, 59721407, 96631267, 156352675
Offset: 0

Views

Author

Keywords

Comments

a(n) is the minimum number of nodes required for a full binary AVL tree of height n+1 whose root node has a balance factor of 0. - Sumukh Patel, Jun 24 2022

Crossrefs

Cf. A000045, A022087, A122195. See A022403 for a very similar sequence.

Programs

Formula

a(n) = 4*A000045(n+2) - 1. - Ron Knott, Aug 25 2006
From R. J. Mathar, May 28 2008: (Start)
a(n) = A022403(n+1).
O.g.f.: (3+x-3*x^2)/((1-x)*(1-x-x^2)).
a(n+1) - a(n) = A022087(n+1). (End)
a(n) = (2^(-n)*(-5*2^n + (10-6*sqrt(5))*(1-sqrt(5))^n + 2*(1+sqrt(5))^n*(5+3*sqrt(5)))) / 5. - Colin Barker, Mar 02 2018
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x). - Stefano Spezia, Feb 01 2025