cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022569 Expansion of Product_{m>=1} (1+x^m)^4.

Original entry on oeis.org

1, 4, 10, 24, 51, 100, 190, 344, 601, 1024, 1702, 2768, 4422, 6948, 10752, 16424, 24782, 36972, 54602, 79872, 115805, 166540, 237664, 336720, 473856, 662596, 920934, 1272728, 1749407, 2392268, 3255410, 4409344, 5945730, 7983388, 10675712, 14220240, 18870672, 24951740, 32878114
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 10*x^2 + 24*x^3 + 51*x^4 + 100*x^5 + 190*x^6 + 344*x^7 + ...
G.f. = q + 4*q^7 + 10*q^13 + 24*q^19 + 51*q^25 + 100*q^31 + 190*q^37 + 344*q^43 + ...
		

Crossrefs

Column k=4 of A286335.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^4:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-4, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^4, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^4, n))}; /* Michael Somos, Apr 26 2008 */
    
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^4)) \\ G. C. Greubel, Feb 26 2018
    

Formula

Expansion of q^(-1/6) * (eta(q^2) / eta(q))^4 in powers of q.
Expansion of chi(-q)^(-4) in powers of q where chi() is a Ramanujan theta function.
Euler transform of period 2 sequence [ 4, 0, ...]. - Michael Somos, Apr 26 2008
Given G.f. A(x) then B(q) = (A(q^6) * q)^2 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v * (1 + 16 * u * v) - u^2. - Michael Somos, Apr 26 2008
Given G.f. A(x) then B(x) = A(q^6) * q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v * (u^2 - v) - 4 * w^2 * (u^2 + v). - Michael Somos, Apr 26 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A022599.
G.f.: Product_{k>0} (1 + x^k)^4.
Convolution inverse of A022599.
G.f.: T(0)/x, where T(k) = 1 - 1/(1 - (1+(x)^(k+1))^4/((1+(x)^(k+1))^4 - 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2013
a(n) ~ exp(2 * Pi * sqrt(n/3)) / (8 * 3^(1/4) * n^(3/4)) * (1 + (Pi/(6*sqrt(3)) - 3*sqrt(3)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Mar 05 2015, extended Jan 16 2017
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(4*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018