cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022573 Expansion of Product_{m>=1} (1+x^m)^8.

Original entry on oeis.org

1, 8, 36, 128, 394, 1088, 2776, 6656, 15155, 33056, 69508, 141568, 280382, 541696, 1023512, 1895424, 3446617, 6163536, 10854400, 18846592, 32296742, 54673920, 91506000, 151523840, 248403014, 403396288, 649286724, 1036287744, 1640796160, 2578305024, 4022351720, 6232177664, 9592906446
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 8*x + 36*x^2 + 128*x^3 + 394*x^4 + 1088*x^5 + 2776*x^6 + ...
G.f. = q + 8*q^4 + 36*q^7 + 128*q^10 + 394*q^13 + 1088*q^16 + 2776*q^19 + ...
		

Crossrefs

Cf. A000009.
Column k=8 of A286335.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^8:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^8, {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
    With[{nmax=50}, CoefficientList[Series[Product[(1+q^k)^8, {k,1,nmax}], {q, 0, nmax}],q]] (* G. C. Greubel, Feb 26 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^8, n))}; /* Michael Somos, May 29 2004 */
    
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^8)) \\ G. C. Greubel, Feb 26 2018
    

Formula

G.f.: Product_{k>0} (1 + x^k)^8.
Given g.f. A(x), then B(q) = q*A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = -u^2 + v + 16*u*v^2. - Michael Somos, May 29 2004
Expansion of q^(-1/3) * (eta(q^2) / eta(q))^8 in powers of q.
Euler transform of period 2 sequence [ 8, 0, ...]. - Michael Somos, Jun 06 2005
Expansion of chi(-x)^-8 in powers of x where chi() is a Ramanujan theta function.
a(n) ~ exp(2 * Pi * sqrt(2*n/3)) / (16 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (8/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(8*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018