cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022632 Expansion of Product_{m>=1} (1 + m*q^m)^4.

Original entry on oeis.org

1, 4, 14, 48, 137, 380, 998, 2488, 5996, 14020, 31868, 70616, 153389, 326248, 681914, 1402880, 2841769, 5678316, 11201956, 21833480, 42081245, 80264752, 151572328, 283577152, 525894397, 967100700, 1764378830, 3194682272, 5742739237, 10252117308, 18182247316
Offset: 0

Views

Author

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -4, g(n) = -n. - Seiichi Manyama, Dec 29 2017

Crossrefs

Column k=4 of A297321.

Programs

  • Magma
    Coefficients(&*[(1+m*x^m)^4:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Jan 24 2018
    
  • Mathematica
    CoefficientList[Take[Expand[Product[(1 + k x^k)^4, {k, 40}]], 40], x] (* Vincenzo Librandi, Jan 24 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^4)) \\ G. C. Greubel, Feb 16 2018

Formula

G.f.: exp(4*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018