cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022842 Beatty sequence for sqrt(8).

Original entry on oeis.org

2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 31, 33, 36, 39, 42, 45, 48, 50, 53, 56, 59, 62, 65, 67, 70, 73, 76, 79, 82, 84, 87, 90, 93, 96, 98, 101, 104, 107, 110, 113, 115, 118, 121, 124, 127, 130, 132, 135, 138, 141, 144, 147, 149, 152, 155, 158, 161, 164
Offset: 1

Views

Author

Keywords

Crossrefs

A bisection of A001951. Cf. A010466.

Programs

  • Magma
    [Floor(n*Sqrt(8)): n in [1..60]]; // Vincenzo Librandi, Oct 24 2011
    
  • Maple
    a:=n->floor(2*n*sqrt(2)): seq(a(n),n=1..60); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    Table[Floor[2*n*Sqrt[2]], {n,1,60}] (* G. C. Greubel, Sep 28 2018 *)
  • PARI
    vector(80, n, floor(2*n*sqrt(2))) \\ G. C. Greubel, Sep 28 2018
    
  • Python
    from sympy import integer_nthroot
    def A022842(n): return integer_nthroot(8*n**2,2)[0] # Chai Wah Wu, Mar 16 2021

Formula

a(n) = floor(2*n*sqrt(2)). - Michel Marcus, Oct 31 2017

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Oct 24 2011