A022842 Beatty sequence for sqrt(8).
2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 31, 33, 36, 39, 42, 45, 48, 50, 53, 56, 59, 62, 65, 67, 70, 73, 76, 79, 82, 84, 87, 90, 93, 96, 98, 101, 104, 107, 110, 113, 115, 118, 121, 124, 127, 130, 132, 135, 138, 141, 144, 147, 149, 152, 155, 158, 161, 164
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Index entries for sequences related to Beatty sequences
Programs
-
Magma
[Floor(n*Sqrt(8)): n in [1..60]]; // Vincenzo Librandi, Oct 24 2011
-
Maple
a:=n->floor(2*n*sqrt(2)): seq(a(n),n=1..60); # Muniru A Asiru, Sep 28 2018
-
Mathematica
Table[Floor[2*n*Sqrt[2]], {n,1,60}] (* G. C. Greubel, Sep 28 2018 *)
-
PARI
vector(80, n, floor(2*n*sqrt(2))) \\ G. C. Greubel, Sep 28 2018
-
Python
from sympy import integer_nthroot def A022842(n): return integer_nthroot(8*n**2,2)[0] # Chai Wah Wu, Mar 16 2021
Formula
a(n) = floor(2*n*sqrt(2)). - Michel Marcus, Oct 31 2017
Extensions
Offset changed from 0 to 1 by Vincenzo Librandi, Oct 24 2011