cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022846 Nearest integer to n*sqrt(2).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 91, 92, 93, 95, 96
Offset: 0

Views

Author

Keywords

Comments

Let R(i,j) be the rectangle with antidiagonals 1; 2,3; 4,5,6; ...; n^2 is in antidiagonal number a(n). Proof: n^2 is in antidiagonal m iff A000217(m-1)< n^2 <=A000217(m), where A000217(m)=m*(m+1)/2. So m = A002024(n^2) = round(n*sqrt(2)) = a(n). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Mar 07 2003
In the rectangle R(i,j), n^2 is the number in row i=A057049(n) and column j=A057050(n), so that for n >= 1, a(n) = -1 + A057049(n) + A057050(n). - Clark Kimberling, Jan 31 2011
Number of triangular numbers less than n^2. - Philippe Deléham, Mar 08 2013

Examples

			n = 4, n^2 = 16; 0, 1, 3, 6, 10, 15 are triangular numbers in interval [0, 16); a(4) = 6. - _Philippe Deléham_, Mar 08 2013
		

Crossrefs

Cf. A063957 (complement of this set).
Cf. A214848 (first differences), also A006338.

Programs

  • Haskell
    a022846 = round . (* sqrt 2) . fromIntegral
    -- Reinhard Zumkeller, Mar 03 2014
    
  • Magma
    [Round(n*Sqrt(2)): n in [0..60]]; // Vincenzo Librandi, Oct 22 2011
    
  • Mathematica
    Round[Sqrt[2]Range[0,70]] (* Harvey P. Dale, Jun 18 2013 *)
  • PARI
    a(n)=round(n*sqrt(2))
    
  • Python
    from math import isqrt
    def A022846(n): return isqrt(n**2<<3)+1>>1 # Chai Wah Wu, Feb 10 2023

Formula

a(n) = A002024(n^2).
a(n+1) - a(n) = 1 or 2. - Philippe Deléham, Mar 08 2013