A063957 Numbers not of the form round(m*sqrt(2)) for any integer m, i.e., complement of A022846.
2, 5, 9, 12, 15, 19, 22, 26, 29, 32, 36, 39, 43, 46, 50, 53, 56, 60, 63, 67, 70, 73, 77, 80, 84, 87, 90, 94, 97, 101, 104, 108, 111, 114, 118, 121, 125, 128, 131, 135, 138, 142, 145, 149, 152, 155, 159, 162, 166, 169, 172, 176, 179, 183, 186, 189, 193, 196, 200
Offset: 1
Keywords
Examples
round(m*sqrt(2)) starts 1,3,4,6,7,8,10,11,13,... so this sequence must start 2,5,9,12,...
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- A. S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27. (Theorem XI)
- Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.
- S.-I. Yasutomi, On Sturmian sequences which are invariant under some substitutions, on ResearchGate.
Programs
-
PARI
{ f=2 + sqrt(2); t=f/2; for (n=1, 1000, write("b063957.txt", n, " ", round(n*f - t)) ) } \\ Harry J. Smith, Sep 03 2009
-
Python
from math import isqrt def A063957(n): return (a:=(n<<1)-1)+(m:=isqrt(k:=a**2<<1)>>1)+int(((m<<1)+1)**2
Chai Wah Wu, Feb 11 2025
Formula
a(n) = round((n - 1/2)*(2 + sqrt(2))) = round(n*3.4142...-1.7071...).
Comments