cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A063957 Numbers not of the form round(m*sqrt(2)) for any integer m, i.e., complement of A022846.

Original entry on oeis.org

2, 5, 9, 12, 15, 19, 22, 26, 29, 32, 36, 39, 43, 46, 50, 53, 56, 60, 63, 67, 70, 73, 77, 80, 84, 87, 90, 94, 97, 101, 104, 108, 111, 114, 118, 121, 125, 128, 131, 135, 138, 142, 145, 149, 152, 155, 159, 162, 166, 169, 172, 176, 179, 183, 186, 189, 193, 196, 200
Offset: 1

Views

Author

Henry Bottomley, Sep 04 2001

Keywords

Comments

Consider natural numbers A000027 as a triangle 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc., then the a(n) indicate rows without a square.
Similar to Beatty sequences: where a pair of complementary Beatty sequences are floor(n*c) and floor(n*c/(c-1)) for c an irrational constant > 1, these pairs of complementary sequences are in general round(n*c) and round((n-1/2)*c/(c-1)) for c an irrational constant > 1.
This sequence is an inhomogeneous Beatty sequence s(alpha,rho) with slope alpha = 2 + sqrt(2), and intercept rho = -1/2 - sqrt(2)/2. - Michel Dekking, Sep 15 2022
Let D := 3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,... be the sequence of first differences of (a(n)). It follows from Yasutomi's criterion that D is NOT the fixed point of a morphism. - Michel Dekking, Sep 20 2022

Examples

			round(m*sqrt(2)) starts 1,3,4,6,7,8,10,11,13,... so this sequence must start 2,5,9,12,...
		

Crossrefs

Programs

  • PARI
    { f=2 + sqrt(2); t=f/2; for (n=1, 1000, write("b063957.txt", n, " ", round(n*f - t)) ) } \\ Harry J. Smith, Sep 03 2009
    
  • Python
    from math import isqrt
    def A063957(n): return (a:=(n<<1)-1)+(m:=isqrt(k:=a**2<<1)>>1)+int(((m<<1)+1)**2Chai Wah Wu, Feb 11 2025

Formula

a(n) = round((n - 1/2)*(2 + sqrt(2))) = round(n*3.4142...-1.7071...).

A214848 First difference of A022846.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 08 2013

Keywords

Comments

Number of triangular numbers in interval [n^2, (n+1)^2).
From Michel Dekking, Sep 20 2022: (Start)
(a(n)) is an inhomogeneous Sturmian sequence s(alpha, rho) with slope alpha = sqrt(2) and intercept 1/2, since A022846(n) = floor(n*sqrt(2) + 1/2).
(a(n)) is the fixed point of the morphism 1->12121, 2->1212121.
This is proved by writing the 0-1 version psi: 0->01010, 1->0101010 of this morphism as a composition
psi = psi_1 psi_3 psi_1 psi_4,
where the psi_i are the three elementary Sturmian morphisms
psi_1: 0->01, 1->0, psi_3: 0->0, 1->01, psi_4: 0->0, 1->10.
By Lemma 2.2.18 in Lothaire it then follows that the 0-1 word (a(n)-1) = A214848 is fixed by the morphism psi (note that in Lothaire psi_1 is phi, psi_3 is G, and psi_4 is G^~). (End)

Examples

			28 is in [25, 36), a(5) = 1.
36 and 45 are in [36, 49), a(6) = 2.
		

References

  • S.-I. Yasutomi, On Sturmian sequences which are invariant under some substitutions, in Number theory and its applications (Kyoto, 1997), pp. 347-373, Kluwer Acad. Publ., Dordrecht, 1999.

Crossrefs

Programs

  • Haskell
    a214848 n = a214848_list !! n
    a214848_list = zipWith (-) (tail a022846_list) a022846_list
    -- Reinhard Zumkeller, Mar 03 2014
  • Mathematica
    Differences[Round[Sqrt[2]Range[0,100]]] (* Harvey P. Dale, Jun 14 2020 *)

Formula

For n > 0: a(n) = A006338(n). - Reinhard Zumkeller, Mar 03 2014

A002024 k appears k times; a(n) = floor(sqrt(2n) + 1/2).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 1

Views

Author

Keywords

Comments

Integer inverse function of the triangular numbers A000217. The function trinv(n) = floor((1+sqrt(1+8n))/2), n >= 0, gives the values 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ..., that is, the same sequence with offset 0. - N. J. A. Sloane, Jun 21 2009
Array T(k,n) = n+k-1 read by antidiagonals.
Eigensequence of the triangle = A001563. - Gary W. Adamson, Dec 29 2008
Can apparently also be defined via a(n+1)=b(n) for n >= 2 where b(0)=b(1)=1 and b(n) = b(n-b(n-2))+1. Tested to be correct for all n <= 150000. - José María Grau Ribas, Jun 10 2011
For any n >= 0, a(n+1) is the least integer m such that A000217(m)=m(m+1)/2 is larger than n. This is useful when enumerating representations of n as difference of triangular numbers; see also A234813. - M. F. Hasler, Apr 19 2014
Number of binary digits of A023758, i.e., a(n) = ceiling(log_2(A023758(n+2))). - Andres Cicuttin, Apr 29 2016
a(n) and A002260(n) give respectively the x(n) and y(n) coordinates of the sorted sequence of points in the integer lattice such that x(n) > 0, 0 < y(n) <= x(n), and min(x(n), y(n)) < max(x(n+1), y(n+1)) for n > 0. - Andres Cicuttin, Dec 25 2016
Partial sums (A060432) are given by S(n) = (-a(n)^3 + a(n)*(1+6n))/6. - Daniel Cieslinski, Oct 23 2017
As an array, T(k,n) is the number of digits columns used in carryless multiplication between a k-digit number and an n-digit number. - Stefano Spezia, Sep 24 2022
a(n) is the maximum number of possible solutions to an n-statement Knights and Knaves Puzzle, where each statement is of the form "x of us are knights" for some 1 <= x <= n, knights can only tell the truth and knaves can only lie. - Taisha Charles and Brittany Ohlinger, Jul 29 2023

Examples

			From _Clark Kimberling_, Sep 16 2008: (Start)
As a rectangular array, a northwest corner:
  1 2 3 4 5 6
  2 3 4 5 6 7
  3 4 5 6 7 8
  4 5 6 7 8 9
This is the weight array (cf. A144112) of A107985 (formatted as a rectangular array). (End)
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^9 + 4*x^9 + 4*x^10 + ...
		

References

  • Edward S. Barbeau, Murray S. Klamkin, and William O. J. Moser, Five Hundred Mathematical Challenges, Prob. 441, pp. 41, 194. MAA 1995.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 97.
  • K. Hardy and K. S. Williams, The Green Book of Mathematical Problems, p. 59, Solution to Prob. 14, Dover NY, 1985
  • R. Honsberger, Mathematical Morsels, pp. 133-134, MAA 1978.
  • J. F. Hurley, Litton's Problematical Recreations, pp. 152; 313-4 Prob. 22, VNR Co., NY, 1971.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 43.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

a(n+1) = 1+A003056(n), A022846(n)=a(n^2), a(n+1)=A002260(n)+A025581(n).
A123578 is an essentially identical sequence.

Programs

  • Haskell
    a002024 n k = a002024_tabl !! (n-1) !! (k-1)
    a002024_row n = a002024_tabl !! (n-1)
    a002024_tabl = iterate (\xs@(x:_) -> map (+ 1) (x : xs)) [1]
    a002024_list = concat a002024_tabl
    a002024' = round . sqrt . (* 2) . fromIntegral
    -- Reinhard Zumkeller, Jul 05 2015, Feb 12 2012, Mar 18 2011
    
  • Haskell
    a002024_list = [1..] >>= \n -> replicate n n
    
  • Haskell
    a002024 = (!!) $ [1..] >>= \n -> replicate n n
    -- Sascha Mücke, May 10 2016
    
  • Magma
    [Floor(Sqrt(2*n) + 1/2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A002024 := n-> ceil((sqrt(1+8*n)-1)/2); seq(A002024(n), n=1..100);
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + 1 (* Branko Curgus, May 12 2009 *)
    Table[n, {n, 13}, {n}] // Flatten (* Robert G. Wilson v, May 11 2010 *)
    Table[PadRight[{},n,n],{n,15}]//Flatten (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    t1(n)=floor(1/2+sqrt(2*n)) /* A002024 = this sequence */
    
  • PARI
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1) */
    
  • PARI
    t3(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1 /* A004736 */
    
  • PARI
    t4(n)=n-1-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1)-1 */
    
  • PARI
    A002024(n)=(sqrtint(n*8)+1)\2 \\ M. F. Hasler, Apr 19 2014
    
  • PARI
    a(n)=(sqrtint(8*n-7)+1)\2
    
  • PARI
    a(n)=my(k=1);while(binomial(k+1,2)+1<=n,k++);k \\ R. J. Cano, Mar 17 2014
    
  • Python
    from math import isqrt
    def A002024(n): return (isqrt(8*n)+1)//2 # Chai Wah Wu, Feb 02 2022
  • Sage
    [floor(sqrt(2*n) +1/2) for n in (1..80)] # G. C. Greubel, Dec 10 2018
    

Formula

a(n) = floor(1/2 + sqrt(2n)). Also a(n) = ceiling((sqrt(1+8n)-1)/2). [See the Liu link for a large collection of explicit formulas. - N. J. A. Sloane, Oct 30 2019]
a((k-1)*k/2 + i) = k for k > 0 and 0 < i <= k. - Reinhard Zumkeller, Aug 30 2001
a(n) = a(n - a(n-1)) + 1, with a(1)=1. - Ian M. Levitt (ilevitt(AT)duke.poly.edu), Aug 18 2002
a(n) = round(sqrt(2n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
T(n,k) = A003602(A118413(n,k)); = T(n,k) = A001511(A118416(n,k)). - Reinhard Zumkeller, Apr 27 2006
G.f.: (x/(1-x))*Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, Oct 06 2003
Equals A127899 * A004736. - Gary W. Adamson, Feb 09 2007
Sum_{i=1..n} Sum_{j=i..n+i-1} T(j,i) = A000578(n); Sum_{i=1..n} T(n,i) = A000290(n). - Reinhard Zumkeller, Jun 24 2007
a(n) + n = A014132(n). - Vincenzo Librandi, Jul 08 2010
a(n) = ceiling(-1/2 + sqrt(2n)). - Branko Curgus, May 12 2009
a(A169581(n)) = A038567(n). - Reinhard Zumkeller, Dec 02 2009
a(n) = round(sqrt(2*n)) = round(sqrt(2*n-1)); there exist a and b greater than zero such that 2*n = 2+(a+b)^2 -(a+3*b) and a(n)=(a+b-1). - Fabio Civolani (civox(AT)tiscali.it), Feb 23 2010
A005318(n+1) = 2*A005318(n) - A205744(n), A205744(n) = A005318(A083920(n)), A083920(n) = n - a(n). - N. J. A. Sloane, Feb 11 2012
Expansion of psi(x) * x / (1 - x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Mar 19 2014
G.f.: (x/(1-x)) * Product_{n>=1} (1 + x^n) * (1 - x^(2*n)). - Paul D. Hanna, Feb 27 2016
a(n) = 1 + Sum_{i=1..n/2} ceiling(floor(2(n-1)/(i^2+i))/(2n)). - José de Jesús Camacho Medina, Jan 07 2017
a(n) = floor((sqrt(8*n-7)+1)/2). - Néstor Jofré, Apr 24 2017
a(n) = floor((A000196(8*n)+1)/2). - Pontus von Brömssen, Dec 10 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
G.f. as array: (x^2*(1 - y)^2 + y^2 + x*y*(1 - 2*y))/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Apr 22 2024

A006338 An "eta-sequence": floor((n+1)*sqrt(2) + 1/2) - floor(n*sqrt(2) + 1/2).

Original entry on oeis.org

2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2
Offset: 1

Views

Author

D. R. Hofstadter, Jul 15 1977

Keywords

Comments

Equals its own "second derivative" (cf. A006337).
Presumably this is the same as the following sequence from Hofstadter's book: the number of triangular numbers between each successive pair of squares. More precisely, a(n) is the number of triangular numbers T such that n^2 <= T < (n+1)^2. E.g., a(3) = 2 because 3^2 <= T < 4^2 permits T(4) = 10 and T(5) = 15 and no other triangular number. - Hugo van der Sanden, May 03 2005.
a(n) = A214848(n) = A022846(n+1) - A022846(n). - Reinhard Zumkeller, Mar 03 2014

References

  • Douglas Hofstadter, "Fluid Concepts and Creative Analogies", Chapter 1: "To seek whence cometh a sequence".
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006338 n = a006338_list !! (n-1)
    a006338_list = tail a214848_list
    -- Reinhard Zumkeller, Mar 03 2014
    
  • Magma
    [Floor((n+1)*Sqrt(2)+1/2) - Floor(n*Sqrt(2)+1/2): n in [1..30]]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    a[n_] := Floor[(n+1)*Sqrt[2]+1/2] - Floor[n*Sqrt[2]+1/2]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Nov 24 2015 *)
    Differences[Table[Floor[n Sqrt[2]+1/2],{n,120}]] (* Harvey P. Dale, Dec 10 2021 *)
  • PARI
    for(n=1,30, print1(floor((n+1)*sqrt(2) + 1/2) - floor(n*sqrt(2) + 1/2), ", ")) \\ G. C. Greubel, Nov 18 2017
    

Formula

a(n) = floor((n+1)*sqrt(2) + 1/2) - floor(n*sqrt(2) + 1/2). - G. C. Greubel, Nov 18 2017

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 28 2003

A057062 Let R(i,j) be the infinite square array with antidiagonals 1; 2,3; 4,5,6; ...; the n-th prime is in antidiagonal a(n).

Original entry on oeis.org

2, 2, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2000

Keywords

Comments

The smallest integer in the j-th antidiagonal is A000124(j-1). So a(n) is the index j such that A000124(j-1) <= prime(n) < A000124(j). - R. J. Mathar, Dec 02 2011

Examples

			The array begins
   1  3  6 10 15 ...
   2  5  9 14 ...
   4  8 13 ...
   7 12 ...
  11 ...
  ...
The third prime, 5, is in the 3rd antidiagonal, so a(3) = 3.
		

Crossrefs

Cf. A057045, A057048, A022846, A057057, A057054. A066888 counts how many times each positive integer appears in this sequence.
Cf. A010051.

Programs

  • Haskell
    a057062 n = a057062_list !! (n-1)
    a057062_list = f 1 [1..] where
       f j xs = (replicate (sum $ map a010051 dia) j) ++ f (j + 1) xs'
         where (dia, xs') = splitAt j xs
    -- Reinhard Zumkeller, Jul 26 2012
    
  • Mathematica
    Table[Round[Sqrt[2*Prime[n]]], {n, 100}] (* T. D. Noe, Dec 03 2011 *)
  • PARI
    a(n)=(sqrtint(8*prime(n))+1)\2 \\ Charles R Greathouse IV, Jul 26 2012
    
  • Python
    from math import isqrt
    from sympy import prime
    def A057062(n): return isqrt(prime(n)<<3)+1>>1 # Chai Wah Wu, Jun 19 2024

Formula

a(n) = round(sqrt(2*prime(n))). - Vladeta Jovovic, Jun 14 2003

A214857 Number of triangular numbers in interval [0, n^2].

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 91, 92, 93, 95, 96, 98, 99, 100
Offset: 0

Views

Author

Philippe Deléham, Mar 09 2013

Keywords

Comments

Partial sums of A214856.

Examples

			0, 1, 3, 6 are in interval [0, 9], a(3) = 4.
0, 1, 3, 6, 10, 15 are in interval [0, 16], a(4) = 6.
		

Crossrefs

Programs

Formula

a(n) = floor((1 + sqrt(1+8*n^2))/2). - Ralf Stephan, Jan 30 2014

A057045 Let R(i,j) be the rectangle with antidiagonals 1; 2,3; 4,5,6; ...; the n-th Lucas number is in antidiagonal a(n).

Original entry on oeis.org

2, 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 41, 52, 66, 85, 107, 137, 174, 221, 281, 358, 455, 579, 737, 937, 1192, 1516, 1929, 2454, 3121, 3970, 5050, 6424, 8171, 10394, 13221, 16818, 21393, 27212
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2000

Keywords

Crossrefs

Programs

  • Python
    from gmpy2 import isqrt_rem, lucas
    def A057045(n):
        i, j = isqrt_rem(2*lucas(n-1))
        return int(i + int(4*(j-i) >= 1)) # Chai Wah Wu, Aug 16 2016

Formula

Round(sqrt(2*A000032(n-1))). - Vladeta Jovovic, Jun 14 2003

A184867 Numbers m such that prime(m) is of the form floor(1/2+k*sqrt(2)). Complement of A184870.

Original entry on oeis.org

2, 4, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 20, 22, 23, 24, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 113, 114, 115, 116, 117, 119, 120, 122, 123, 124, 126, 127, 129, 130, 133, 134, 135, 136, 140, 143, 144, 145, 146
Offset: 1

Views

Author

Clark Kimberling, Jan 23 2011

Keywords

Crossrefs

Programs

  • Mathematica
    r=2^(1/2); h=1/2; a[n_]:=Floor[n*r+h];
    Table[a[n], {n, 1, 120}] (* A022846, int. nearest 2^(1/2) *)
    t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
    t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
    t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
    (* Lists t1, t2, t3 match A184865, A184866, A184867. *)

A057054 Let R(i,j) be the rectangle with antidiagonals 1; 2,3; 4,5,6; ...; n^3 is in antidiagonal a(n).

Original entry on oeis.org

1, 4, 7, 11, 16, 21, 26, 32, 38, 45, 52, 59, 66, 74, 82, 91, 99, 108, 117, 126, 136, 146, 156, 166, 177, 187, 198, 210, 221, 232, 244, 256, 268, 280, 293, 305, 318, 331, 344, 358, 371, 385, 399, 413, 427, 441, 456, 470, 485, 500
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[n Sqrt[2n]],{n,50}] (* Harvey P. Dale, Feb 10 2020 *)

Formula

Round(n*(sqrt(2*n))). - Vladeta Jovovic, Jun 14 2003

A057057 Let R(i,j) be the rectangle with antidiagonals 1; 2,3; 4,5,6; ...; C(n,3) is in antidiagonal a(n).

Original entry on oeis.org

1, 3, 4, 6, 8, 11, 13, 15, 18, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 55, 60, 64, 68, 72, 76, 81, 85, 90, 95, 100, 104, 109, 114, 119, 125, 130, 135, 141, 146, 152, 157, 163, 168, 174, 180, 186, 192, 198, 204, 210, 216, 223, 229
Offset: 3

Views

Author

Clark Kimberling, Jul 30 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sqrt[2*Binomial[n,3]]],{n,3,60}] (* Harvey P. Dale, Nov 16 2021 *)

Formula

Round(sqrt(2*binomial(n, 3))). - Vladeta Jovovic, Jun 14 2003
Showing 1-10 of 17 results. Next