cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023143 Numbers k such that prime(k) == 1 (mod k).

Original entry on oeis.org

1, 2, 5, 6, 12, 14, 181, 6459, 6460, 6466, 100362, 251712, 251732, 637236, 10553504, 10553505, 10553547, 10553827, 10553851, 10553852, 69709709, 69709724, 69709728, 69709869, 69709961, 69709962, 179992920, 179992922, 179993170, 465769815, 465769819, 465769840, 3140421737, 3140421744, 3140421767, 3140421892, 3140421935
Offset: 1

Views

Author

Keywords

Comments

A004648(a(n)) <= 1. - Reinhard Zumkeller, Jul 30 2012

Examples

			6 is in the sequence because the 6th prime, 13, is congruent to 1 (mod 6).
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a023143 n = a023143_list !! (n-1)
    a023143_list = 1 : map (+ 1) (elemIndices 1 a004648_list)
    -- Reinhard Zumkeller, Jul 30 2012, Jun 08 2011
    
  • Magma
    [n: n in [1..10000] | IsIntegral((NthPrime(n)-1)/n)]; // Marius A. Burtea, Dec 30 2018
  • Mathematica
    Do[ If[ IntegerQ[ (Prime[ n ] - 1) / n ], Print[ n ] ], {n, 1, 10^8} ]
  • PARI
    n=0; print1(1); forprime(p=2,1e9, if(p%n++==1, print1(", "n))) \\ Charles R Greathouse IV, Apr 28 2015
    
  • Python
    def A023143(end):
        primes=[2,3]
        a023143_list=[1]
        num=3
        while len(primes)<=end:
            num+=1
            prime=False
            length=len(primes)
            for y in range(0,length):
                if num % primes[y]!=0:
                    prime=True
                else:
                    prime=False
                    break
            if (prime):
                primes.append(num)
        for x in range(2, len(primes)):
            if (primes[x-1]%(x))==1:
                a023143_list.append(x)
        return a023143_list
    # Conner L. Delahanty, Apr 19 2014
    
  • Python
    from sympy import primerange
    def A023143(end): return [n+1 for n, p in enumerate(primerange(2, end)) if (p-1) % (n-1) == 0] # David Radcliffe, Jun 27 2016
    

Extensions

More terms from Jud McCranie, Dec 11 1999
a(30)-a(37) from Zak Seidov, Apr 19 2014
Terms a(33)-a(37) sorted in correct order by Giovanni Resta, Feb 23 2020