cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A020344 Fibonacci(a(n)) is the least Fibonacci number beginning with n.

Original entry on oeis.org

0, 1, 3, 4, 19, 5, 15, 25, 6, 16, 21, 45, 26, 7, 12, 17, 41, 22, 46, 27, 51, 8, 56, 13, 37, 18, 42, 66, 23, 47, 71, 28, 52, 119, 9, 33, 57, 14, 148, 38, 62, 19, 86, 43, 67, 134, 24, 225, 48, 72, 139, 29, 230, 53, 254, 10, 278, 34, 302, 58, 259, 15, 283, 39, 240, 63, 197, 20, 154, 288
Offset: 0

Views

Author

Keywords

Comments

Fixed points of this sequence are in A038546. - Alois P. Heinz, Jul 08 2022

Crossrefs

Programs

  • Mathematica
    nn = 100; t = tn = Table[0, {nn}]; found = 0; n = 0; While[found < nn, n++; f = Fibonacci[n]; d = IntegerDigits[f]; i = 1; While[i <= Length[d], k = FromDigits[Take[d, i]]; If[k > nn, Break[]]; If[t[[k]] == 0, t[[k]] = f; tn[[k]] = n; found++]; i++]]; tn = Join[{0}, tn] (* T. D. Noe, Apr 02 2014 *)
  • Python
    def aupton(nn):
        ans, f, g, k = dict(), 0, 1, 0
        while len(ans) < nn+1:
            sf = str(f)
            for i in range(1, len(sf)+1):
                if int(sf[:i]) > nn:
                    break
                if sf[:i] not in ans:
                    ans[sf[:i]] = k
            f, g, k = g, f+g, k+1
        return [int(ans[str(i)]) for i in range(nn+1)]
    print(aupton(70)) # Michael S. Branicky, Jul 08 2022

Formula

A000045(a(n)) = A020345(n).

A020345 Smallest Fibonacci number beginning with n.

Original entry on oeis.org

0, 1, 2, 3, 4181, 5, 610, 75025, 8, 987, 10946, 1134903170, 121393, 13, 144, 1597, 165580141, 17711, 1836311903, 196418, 20365011074, 21, 225851433717, 233, 24157817, 2584, 267914296, 27777890035288, 28657, 2971215073, 308061521170129, 317811
Offset: 0

Views

Author

Keywords

Comments

The graph of the indices A020344 is much more interesting. - T. D. Noe, Apr 02 2014
a(1382) is the first term with > 1000 digits (1004). - Michael S. Branicky, Jul 08 2022

Examples

			a(4) = 4181 is a Fibonacci number starting with 4.
		

Crossrefs

Programs

  • Mathematica
    nn = 31; t = tn = Table[0, {nn}]; found = 0; n = 0; While[found < nn, n++;  f = Fibonacci[n]; d = IntegerDigits[f]; i = 1; While[i <= Length[d], k = FromDigits[Take[d, i]]; If[k > nn, Break[]]; If[t[[k]] == 0, t[[k]] = f; tn[[k]] = n; found++]; i++]]; t = Join[{0}, t] (* T. D. Noe, Apr 02 2014 *)
  • Python
    def aupton(nn):
        ans, f, g, k = dict(), 0, 1, 0
        while len(ans) < nn+1:
            sf = str(f)
            for i in range(1, len(sf)+1):
                if int(sf[:i]) > nn:
                    break
                if sf[:i] not in ans:
                    ans[sf[:i]] = f
            f, g, k = g, f+g, k+1
        return [int(ans[str(i)]) for i in range(nn+1)]
    print(aupton(31)) # Michael S. Branicky, Jul 08 2022

Formula

a(n) = A000045(A020344(n)).

A023183 a(n) = least k such that Fibonacci(k) ends with n, or -1 if there are none.

Original entry on oeis.org

0, 1, 3, 4, 9, 5, 21, 14, 6, 11, 15, 22, 216, 7, 111, 130, 168, 37, 27, 112, 60, 8, 117, 64, 198, 25, 99, 136, 204, 29, 105, 88, 174, 13, 9, 70, 222, 43, 93, 172, 30, 41, 63, 124, 12, 55, 21, 154, 186, 49, 75, 148, 36, 67, 129, 10, 162, 23, 87, 118, 180, 61, 57, 166, 72, 20
Offset: 0

Views

Author

Keywords

Comments

It appears that if n is greater than 99 and congruent to 4 or 6 (mod 8) then there is no Fibonacci number ending in that n. - Jason Earls, Jun 19 2004
This is because there is no Fibonacci number == 4 or 6 (mod 8). - Robert Israel, Sep 11 2020

Crossrefs

Programs

  • Maple
    V:= Array(0..999,-1):
    V[0]:= 0: u:= 1: v:= 0:
    for n from 1 to 1500 do
      t:= v;
      v:= u+v mod 1000;
      u:= t;
      if V[v] = -1 then V[v]:= n fi;
      if V[v mod 100] = -1 then V[v mod 100] := n fi;
      if V[v mod 10] = -1 then V[v mod 10]:= n fi;
    od:
    seq(V[i],i=0..999); # Robert Israel, Sep 11 2020
  • Mathematica
    d[n_]:=IntegerDigits[n]; Table[j=0; While[Length[d[Fibonacci[j]]]<(le=Length[y=d[n]]), j++]; i=j; While[Take[d[Fibonacci[i]],-le]!=y,i++]; i,{n,0,65}] (* Jayanta Basu, May 18 2013 *)
  • Python
    from itertools import count
    def A023183(n):
        if n < 2: return n
        if n > 99 and n%8 in {4, 6}: return -1
        k, f, g, s = 3, 1, 2, str(n)
        pow10, seen = 10**len(s), set()
        while (f, g) not in seen:
            seen.add((f, g))
            if g%pow10 == n:
                return k
            f, g, k = g, (f+g)%pow10, k+1
        return -1
    print([A023183(n) for n in range(66)]) # Michael S. Branicky, Jun 27 2024
Showing 1-3 of 3 results.