A023201 Primes p such that p + 6 is also prime. (Lesser of a pair of sexy primes.)
5, 7, 11, 13, 17, 23, 31, 37, 41, 47, 53, 61, 67, 73, 83, 97, 101, 103, 107, 131, 151, 157, 167, 173, 191, 193, 223, 227, 233, 251, 257, 263, 271, 277, 307, 311, 331, 347, 353, 367, 373, 383, 433, 443, 457, 461, 503, 541, 557, 563, 571, 587, 593, 601, 607, 613, 641, 647
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021].
- Wikipedia, Sexy prime.
Crossrefs
Programs
-
Haskell
a023201 n = a023201_list !! (n-1) a023201_list = filter ((== 1) . a010051 . (+ 6)) a000040_list -- Reinhard Zumkeller, Feb 25 2013
-
Magma
[n: n in [0..40000] | IsPrime(n) and IsPrime(n+6)]; // Vincenzo Librandi, Aug 04 2010
-
Maple
A023201 := proc(n) option remember; if n = 1 then 5; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime(a+6) then return a; end if; end do: end if; end proc: # R. J. Mathar, May 28 2013
-
Mathematica
Select[Range[10^2], PrimeQ[ # ]&&PrimeQ[ #+6] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *) Select[Prime[Range[120]],PrimeQ[#+6]&] (* Harvey P. Dale, Mar 20 2018 *)
-
PARI
is(n)=isprime(n+6)&&isprime(n) \\ Charles R Greathouse IV, Mar 20 2013