A023202 Primes p such that p + 8 is also prime.
3, 5, 11, 23, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191, 233, 263, 269, 359, 389, 401, 431, 449, 479, 491, 563, 569, 593, 599, 653, 683, 701, 719, 743, 761, 821, 911, 929, 983, 1013, 1031, 1061, 1109, 1163, 1193, 1223, 1229, 1283, 1289, 1319, 1373, 1439
Offset: 1
Links
- Matt C. Anderson, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe, corrected by Sean A. Irvine and Georg Fischer)
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Twin Primes
Crossrefs
Programs
-
GAP
Filtered([1..1500], k-> IsPrime(k) and IsPrime(k+8)); # G. C. Greubel, Feb 07 2020
-
Magma
[n: n in [0..1500] | IsPrime(n) and IsPrime(n+8)]; // Vincenzo Librandi, Nov 20 2010
-
Maple
select(n-> isprime(n) and isprime(n+8), [`$`(1..1500)]); # G. C. Greubel, Feb 07 2020
-
Mathematica
Select[Range[1500], PrimeQ[#] && PrimeQ[#+8]&] (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *) Select[Prime[Range[250]],PrimeQ[#+8]&] (* Harvey P. Dale, Dec 24 2020 *)
-
PARI
is(n)=isprime(n)&&isprime(n+8) \\ Charles R Greathouse IV, Jul 01 2013
-
Sage
[n for n in (1..1500) if is_prime(n) and is_prime(n+8)] # G. C. Greubel, Feb 07 2020
Comments