A023271 Primes p such that p, p+6, p+12, p+18 are all primes.
5, 11, 41, 61, 251, 601, 641, 1091, 1481, 1601, 1741, 1861, 2371, 2671, 3301, 3911, 4001, 5101, 5381, 5431, 5641, 6311, 6361, 9461, 11821, 12101, 12641, 13451, 14621, 14741, 15791, 15901, 17471, 18211, 19471, 20341, 21481, 23321, 24091, 26171, 26681
Offset: 1
Keywords
Links
- Matt C. Anderson and Robert Israel, Table of n, a(n) for n = 1..10000 (n = 1..100 from Matt C. Anderson)
- Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes. - _N. J. A. Sloane_, Mar 07 2021]
- Wikipedia, Sexy prime.
Programs
-
Magma
[p: p in PrimesInInterval(2, 1000000) | forall{i: i in [ 6, 12, 18] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 15 2015
-
Maple
for a to 2*10^5 do if `and`(isprime(a), isprime(a+6), isprime(a+12), isprime(a+18)) then print(a); end if; end do; # code produces 109 primes # Matt C. Anderson, Jul 15 2015
-
Mathematica
Select[Prime[Range[1000]], PrimeQ[# + 6] && PrimeQ[# + 12] && PrimeQ[# + 18] &] (* Vincenzo Librandi, Jul 15 2015 *) (* The following program uses the AllTrue function from Mathematica version 10 *) Select[Prime[Range[3000]], AllTrue[# + {6, 12, 18}, PrimeQ] &] (* Harvey P. Dale, Jun 06 2017 *)
-
PARI
main(size)=my(v=vector(size),i,r=1,p);for(i=1,size,while(1,p=prime(r);if(isprime(p+6)&&isprime(p+12)&&isprime(p+18),v[i]=p;r++;break,r++))); v \\ Anders Hellström, Jul 16 2015
Extensions
Edited by N. J. A. Sloane, Aug 04 2009 following a suggestion from Daniel Forgues
Comments