cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023271 Primes p such that p, p+6, p+12, p+18 are all primes.

Original entry on oeis.org

5, 11, 41, 61, 251, 601, 641, 1091, 1481, 1601, 1741, 1861, 2371, 2671, 3301, 3911, 4001, 5101, 5381, 5431, 5641, 6311, 6361, 9461, 11821, 12101, 12641, 13451, 14621, 14741, 15791, 15901, 17471, 18211, 19471, 20341, 21481, 23321, 24091, 26171, 26681
Offset: 1

Views

Author

Keywords

Comments

Smallest member of a "sexy" prime quadruple.
For n > 1, a(n) ends in 1. - Robert Israel, Jul 16 2015
The only sexy prime quintuple corresponding to (p, p+6, p+12, p+18, p+24) starts with a(1) = 5, so this quintuple is (5, 11, 17, 23, 29) (see Wikipedia link and A206039). - Bernard Schott, Mar 10 2023

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(2, 1000000) | forall{i: i in [ 6, 12, 18] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 15 2015
    
  • Maple
    for a to 2*10^5 do
    if `and`(isprime(a), isprime(a+6), isprime(a+12), isprime(a+18))
    then print(a);
    end if;
    end do;
    # code produces 109 primes
    # Matt C. Anderson, Jul 15 2015
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[# + 6] && PrimeQ[# + 12] && PrimeQ[# + 18] &] (* Vincenzo Librandi, Jul 15 2015 *)
    (* The following program uses the AllTrue function from Mathematica version 10 *) Select[Prime[Range[3000]], AllTrue[# + {6, 12, 18}, PrimeQ] &] (* Harvey P. Dale, Jun 06 2017 *)
  • PARI
    main(size)=my(v=vector(size),i,r=1,p);for(i=1,size,while(1,p=prime(r);if(isprime(p+6)&&isprime(p+12)&&isprime(p+18),v[i]=p;r++;break,r++))); v \\ Anders Hellström, Jul 16 2015

Extensions

Edited by N. J. A. Sloane, Aug 04 2009 following a suggestion from Daniel Forgues