A023365 a(n) = 2^(3^(n-1)).
2, 8, 512, 134217728, 2417851639229258349412352, 14134776518227074636666380005943348126619871175004951664972849610340958208
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..8
- W. van der Aalst, J. Buijs and B. van Dongen, Towards Improving the Representational Bias of Process Mining, 2012. - From _N. J. A. Sloane_, Feb 03 2013
- X. Gourdon and P. Sebah, Pythagoras' Constant. - From _Steven Finch_, Oct 07 2024
Programs
-
Magma
[Floor(2^(3^(n-1))): n in [1..10]]; // Vincenzo Librandi, Aug 11 2014
-
Mathematica
NestList[#^3&,2,6] (* Harvey P. Dale, Aug 10 2014 *)
-
Python
def A023365(n): return 1<<3**(n-1) # Chai Wah Wu, Oct 11 2024
-
Sage
[2^(3^(n-1)) for n in range(1,8)] # Stefano Spezia, Oct 15 2024
Formula
a(n) = a(n-1)^3.
a(n+1) is conjectured to be the reduced denominator of b(n) = b(n-1)*(3/2 - b(n-1)^2); b(0) = 1/2. - Steven Finch, Oct 08 2024
Comments