A023431 Generalized Catalan Numbers x^3*A(x)^2 + (x-1)*A(x) + 1 =0.
1, 1, 1, 2, 4, 7, 13, 26, 52, 104, 212, 438, 910, 1903, 4009, 8494, 18080, 38656, 82988, 178802, 386490, 837928, 1821664, 3970282, 8673258, 18987930, 41652382, 91539466, 201525238, 444379907, 981384125, 2170416738, 4806513660
Offset: 0
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 13*x^6 + 26*x^7 + 52*x^8 + 104*x^9 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Paul Barry, Elliptic Curves, Riordan arrays and Lattice Paths, arXiv:2507.16765 [math.CO], 2025. See p. 16.
- Johann Cigler, Some nice Hankel determinants, arXiv preprint arXiv:1109.1449 [math.CO], 2011.
- Shalosh B. Ekhad and Mingjia Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 666
- Feihu Liu, Ying Wang, Yingrui Zhang, and Zihao Zhang, Hankel Determinants for Convolution of Power Series: An Extension of Cigler's Results, arXiv:2503.17187 [math.CO], 2025. See p. 9.
- K. Park and G.-S. Cheon, Lattice path counting with a bounded strip restriction
- Helmut Prodinger, Motzkin paths of bounded height with two forbidden contiguous subwords of length two, arXiv:2310.12497 [math.CO], 2023.
Programs
-
Haskell
a023431 n = a023431_list !! n a023431_list = 1 : 1 : f [1,1] where f xs'@(x:_:xs) = y : f (y : xs') where y = x + sum (zipWith (*) xs $ reverse $ xs') -- Reinhard Zumkeller, Nov 13 2012
-
Magma
[(&+[Binomial(n-k, 2*k)*Catalan(k): k in [0..Floor(n/3)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
-
Maple
a := n -> hypergeom([1/3 - n/3, 2/3 - n/3, -n/3], [2, -n], 27): seq(simplify(a(n)), n = 0..32); # Peter Luschny, Jun 15 2022
-
Mathematica
a[0]=1; a[n_]:= a[n]= a[n-1] + Sum[a[k]*a[n-3-k], {k, 0, n-3}]; Table[a[n], {n,0,40}]
-
PARI
{a(n) = polcoeff( (1 - x - sqrt((1-x)^2 - 4*x^3 + x^4 * O(x^n))) / 2, n+3)}; /* Michael Somos, Jul 13 2003 */
-
SageMath
[sum(binomial(n-k,2*k)*catalan_number(k) for k in (0..(n//3))) for n in (0..40)] # G. C. Greubel, Jun 15 2022
Formula
G.f.: (1 - x - sqrt((1-x)^2 - 4*x^3)) / (2*x^3) = A(x). y = x * A(x) satisfies 0 = x - y + x*y + (x*y)^2. - Michael Somos, Jul 13 2003
a(n+1) = a(n) + a(0)*a(n-2) + a(1)*a(n-3) + ... + a(n-2)*a(0). - Michael Somos, Jul 13 2003
a(n) = A025246(n+3). - Michael Somos, Jan 20 2004
G.f.: (1/(1-x))*c(x^3/(1-x)^2), c(x) the g.f. of A000108. - From Paul Barry, Sep 19 2008
From Paul Barry, May 22 2009: (Start)
G.f.: 1/(1-x-x^3/(1-x-x^3/(1-x-x^3/(1-x-x^3/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-k, 2*k)*A000108(k). (End)
(n+3)*a(n) = (2*n+3)*a(n-1) - n*a(n-2) + 2*(2*n-3)*a(n-3). - R. J. Mathar, Nov 26 2012
0 = a(n)*(16*a(n+1) - 10*a(n+2) + 32*a(n+3) - 22*a(n+4)) + a(n+1)*(2*a(n+1) - 15*a(n+2) + 9*a(n+3) + 4*a(n+4)) + a(n+2)*(a(n+2) + 2*a(n+3) - 5*a(n+4)) + a(n+3)*(a(n+3) + a(n+4)) if n>=0. - Michael Somos, Jan 30 2014
a(n) ~ (8 + 12*r^2 + 5*r) * sqrt(r^2 - 4*r + 3) / (4 * sqrt(Pi) * n^(3/2) * r^n), where r = 0.432040800333095789... is the real root of the equation -1 + 2*r - r^2 + 4*r^3 = 0. - Vaclav Kotesovec, Jun 15 2022
a(n) = hypergeom([(1 - n)/3, (2 - n)/3, -n/3], [2, -n], 27). - Peter Luschny, Jun 15 2022
Comments