cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023431 Generalized Catalan Numbers x^3*A(x)^2 + (x-1)*A(x) + 1 =0.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 13, 26, 52, 104, 212, 438, 910, 1903, 4009, 8494, 18080, 38656, 82988, 178802, 386490, 837928, 1821664, 3970282, 8673258, 18987930, 41652382, 91539466, 201525238, 444379907, 981384125, 2170416738, 4806513660
Offset: 0

Views

Author

Keywords

Comments

Essentially the same as A025246.
Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(2,-1). E.g. a(5)=7 because we have HHHHH, HHUD, HUDH, HUHD, UDHH, UHDH and UHHD. - Emeric Deutsch, Dec 25 2003
Also number of peakless Motzkin paths of length n with no double rises; in other words, Motzkin paths of length n with no UD's and no UU's, where U=(1,1) and D=(1,-1). E.g. a(5)=7 because we have HHHHH, HHUHD, HUHDH, HUHHD, UHDHH, UHHDH and UHHHD, where H=(1,0). - Emeric Deutsch, Jan 09 2004
Series reversion of g.f. A(x) is -A(-x) (if offset 1). - Michael Somos, Jul 13 2003
Hankel transform is A010892(n+1). [From Paul Barry, Sep 19 2008]
Number of FU_{k}-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. This also works for U_{k}F-equivalence classes. - Sergey Kirgizov, Apr 08 2018

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 13*x^6 + 26*x^7 + 52*x^8 + 104*x^9 + ...
		

Crossrefs

Programs

  • Haskell
    a023431 n = a023431_list !! n
    a023431_list = 1 : 1 : f [1,1] where
       f xs'@(x:_:xs) = y : f (y : xs') where
         y = x + sum (zipWith (*) xs $ reverse $ xs')
    -- Reinhard Zumkeller, Nov 13 2012
    
  • Magma
    [(&+[Binomial(n-k, 2*k)*Catalan(k): k in [0..Floor(n/3)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
    
  • Maple
    a := n -> hypergeom([1/3 - n/3, 2/3 - n/3, -n/3], [2, -n], 27):
    seq(simplify(a(n)), n = 0..32); # Peter Luschny, Jun 15 2022
  • Mathematica
    a[0]=1; a[n_]:= a[n]= a[n-1] + Sum[a[k]*a[n-3-k], {k, 0, n-3}];
    Table[a[n], {n,0,40}]
  • PARI
    {a(n) = polcoeff( (1 - x - sqrt((1-x)^2 - 4*x^3 + x^4 * O(x^n))) / 2, n+3)}; /* Michael Somos, Jul 13 2003 */
    
  • SageMath
    [sum(binomial(n-k,2*k)*catalan_number(k) for k in (0..(n//3))) for n in (0..40)] # G. C. Greubel, Jun 15 2022

Formula

G.f.: (1 - x - sqrt((1-x)^2 - 4*x^3)) / (2*x^3) = A(x). y = x * A(x) satisfies 0 = x - y + x*y + (x*y)^2. - Michael Somos, Jul 13 2003
a(n+1) = a(n) + a(0)*a(n-2) + a(1)*a(n-3) + ... + a(n-2)*a(0). - Michael Somos, Jul 13 2003
a(n) = A025246(n+3). - Michael Somos, Jan 20 2004
G.f.: (1/(1-x))*c(x^3/(1-x)^2), c(x) the g.f. of A000108. - From Paul Barry, Sep 19 2008
From Paul Barry, May 22 2009: (Start)
G.f.: 1/(1-x-x^3/(1-x-x^3/(1-x-x^3/(1-x-x^3/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-k, 2*k)*A000108(k). (End)
(n+3)*a(n) = (2*n+3)*a(n-1) - n*a(n-2) + 2*(2*n-3)*a(n-3). - R. J. Mathar, Nov 26 2012
0 = a(n)*(16*a(n+1) - 10*a(n+2) + 32*a(n+3) - 22*a(n+4)) + a(n+1)*(2*a(n+1) - 15*a(n+2) + 9*a(n+3) + 4*a(n+4)) + a(n+2)*(a(n+2) + 2*a(n+3) - 5*a(n+4)) + a(n+3)*(a(n+3) + a(n+4)) if n>=0. - Michael Somos, Jan 30 2014
a(n) ~ (8 + 12*r^2 + 5*r) * sqrt(r^2 - 4*r + 3) / (4 * sqrt(Pi) * n^(3/2) * r^n), where r = 0.432040800333095789... is the real root of the equation -1 + 2*r - r^2 + 4*r^3 = 0. - Vaclav Kotesovec, Jun 15 2022
a(n) = hypergeom([(1 - n)/3, (2 - n)/3, -n/3], [2, -n], 27). - Peter Luschny, Jun 15 2022