A024318 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (Fibonacci numbers).
0, 0, 1, 2, 3, 5, 8, 13, 26, 42, 68, 110, 178, 288, 466, 754, 1254, 2029, 3283, 5312, 8595, 13907, 22502, 36409, 58911, 95320, 154608, 250161, 404769, 654930, 1059699, 1714629, 2774328, 4488957, 7263285
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
b:= func< n,j | IsIntegral((Sqrt(8*j+9) -3)/2) select Fibonacci(n-j+1) else 0 >; A024318:= func< n | (&+[b(n,j): j in [1..Floor((n+1)/2)]]) >; [A024318(n) : n in [1..80]]; // G. C. Greubel, Jan 19 2022
-
Mathematica
Table[t=0; m=3; p=BitShiftRight[n]; n--; While[n>p, t += Fibonacci[n+1]; n -= m++]; t, {n, 120}] (* G. C. Greubel, Jan 19 2022 *)
-
Sage
def b(n,j): return fibonacci(n-j+1) if ((sqrt(8*j+9) -3)/2).is_integer() else 0 def A024318(n): return sum( b(n,j) for j in (1..floor((n+1)/2)) ) [A024318(n) for n in (1..120)] # G. C. Greubel, Jan 19 2022
Formula
a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*Fibonacci(n-j+1). - G. C. Greubel, Jan 19 2022