cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A023516 Number of distinct prime divisors of prime(n)*prime(n-1) - 1.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 2, 4, 2, 3, 2, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 4, 4, 4, 4, 4, 3, 4, 2, 3, 4, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 2, 4
Offset: 1

Views

Author

Keywords

Comments

This is taking prime(0)=1 (see first comment in A023515). - Vincenzo Librandi, Apr 27 2019

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(NthPrime(n)*(NthPrime(n-1))-1): n in [1..100]]; // Vincenzo Librandi, Apr 27 2019
    
  • Maple
    0,seq(nops(numtheory:-factorset(ithprime(n)*ithprime(n-1)-1)),n=2..120); # Muniru A Asiru, Apr 29 2019
  • Mathematica
    Prepend[Table[PrimeNu[Prime[n] Prime[n-1] - 1], {n, 2, 80}],0] (* Vincenzo Librandi, Apr 27 2019 *)
  • PARI
    a(n) = if (n==1, 0, omega(prime(n)*prime(n-1) - 1)); \\ Michel Marcus, Apr 30 2019

Formula

a(n) = A001221(A023515(n)).

A352163 a(n) is the least prime p such that p+3 is divisible by exactly n distinct primes.

Original entry on oeis.org

2, 3, 67, 907, 10007, 170167, 3233227, 74364287, 2156564407, 79792883167, 2874700358527, 106363913265607, 4999103923483667, 204963260862830467, 15485628496253425507, 640920116718070879687, 45505328286983032457987, 3048856995227863174685327, 191219157742953165026391187, 14692441860003072638808605267
Offset: 1

Views

Author

Robert Israel, Mar 06 2022

Keywords

Comments

For n>2, a(n) = A002110(n+1)/3-3 if that is prime. This occurs for n = 3, 5, 6, 7, 8, 9, 14, 16, 46, 47, 70, 101, 113, 168, 175, 200, ...

Examples

			a(4) = 907 because 907 is prime and 907+3 = 910 = 2*5*7*13 has 4 prime divisors.
		

Crossrefs

Programs

  • Maple
    f:= proc(p) nops(numtheory:-factorset(p+3)) end proc:
    V:= Vector(8): count:= 0:
    p:= 1:
    while count < 8 do
      p:= nextprime(p);
      v:= f(p);
      if V[v] = 0 then V[v]:= p; count:= count+1; fi
    od:
    convert(V,list);

Extensions

More terms from David A. Corneth, Mar 06 2022
Showing 1-2 of 2 results.