cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023856 a(n) = 1*(n+1-1) + 2*(n+1-2) + ... + k*(n+1-k), where k = floor((n+1)/2).

Original entry on oeis.org

2, 3, 10, 13, 28, 34, 60, 70, 110, 125, 182, 203, 280, 308, 408, 444, 570, 615, 770, 825, 1012, 1078, 1300, 1378, 1638, 1729, 2030, 2135, 2480, 2600, 2992, 3128, 3570, 3723, 4218, 4389, 4940, 5130, 5740, 5950, 6622, 6853, 7590, 7843, 8648, 8924, 9800, 10100, 11050, 11375
Offset: 1

Views

Author

Keywords

Comments

Or, a(n) = s(1)s(n) + s(2)s(n-1) + ... + s(k)s(n-k+1), where k = floor( n/2 ) and s = (natural numbers).
Sum of the areas of the distinct rectangles with positive integer length and width such that L + W = n + 2, W < L. For example, a(5) = 28; the rectangles are 1 X 6, 2 X 5 and 3 X 4. The sum of the areas is then 1*6 + 2*5 + 3*4 = 28. - Wesley Ivan Hurt, Nov 12 2017

Crossrefs

Programs

  • Magma
    [(n+2)*(4*n^2 + 13*n + 6 - 3*(n+2)*(-1)^n)/48 : n in [1..80]]; // Wesley Ivan Hurt, Nov 29 2017
    
  • Maple
    seq(add(i*(k-i+2), i=1..ceil(k/2)), k=1..70); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[-Ceiling[n/2]*(Ceiling[n/2]+1)*(2*Ceiling[n/2]-3n-5)/6, {n, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{2,3,10,13,28,34,60},60] (* Harvey P. Dale, Jan 09 2017 *)
  • PARI
    my(x='x+O('x^99)); Vec(x*(2+x+x^2)/((1+x)^3*(x-1)^4)) \\ Altug Alkan, Dec 17 2017
    
  • SageMath
    [(n+2)*(4*n^2 +13*n +6 -3*(n+2)*(-1)^n)/48 for n in (1..60)] # G. C. Greubel, Jul 12 2022

Formula

a(n) = (n+2)*(4*n^2 + 13*n + 6 - 3(n+2)(-1)^n)/48.
a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+2) = -ceiling(n/2)*(ceiling(n/2) + 1)*(2*ceiling(n/2) - 3n - 5)/6. - Wesley Ivan Hurt, Sep 20 2013
G.f.: x*(2+x+x^2) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7). - Wesley Ivan Hurt, Dec 01 2017
a(n - 1) = (A000292(n) - (n mod 2) * (ceiling(n / 2)) ^ 2) / 2. - Luc Rousseau, Feb 25 2018
E.g.f.: (1/24)*( x*(36 + 15*x + 2*x^2)*cosh(x) + (12 + 21*x + 18*x^2 + 2*x^3)*sinh(x) ). - G. C. Greubel, Jul 12 2022

Extensions

Title simplified by Sean A. Irvine, Jun 12 2019