cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023879 Number of partitions in expanding space.

Original entry on oeis.org

1, 1, 3, 12, 79, 722, 8675, 128177, 2248873, 45644104, 1051632553, 27107038863, 772751427746, 24136897360750, 819689757351091, 30068876227952332, 1184869328943005936, 49914047187427191742
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A062796.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^(k-1)): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    seq(coeff(series(mul((1-x^k)^(-k^(k-1)),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^(k-1)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,(1-x^k+x*O(x^n))^(-k^(k-1))),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m, d, d^d)*x^m/m) +x*O(x^n)),n)} \\ Paul D. Hanna, Sep 05 2012
    

Formula

G.f.: Product_{k>=1} (1 - x^k)^(-k^(k-1)).
G.f.: exp( Sum_{n>=1} A062796(n)/n*x^n ), where A062796(n) = Sum_{d|n} d^d. - Paul D. Hanna, Sep 05 2012
a(n) ~ n^(n-1). - Vaclav Kotesovec, Mar 14 2015