cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023942 Theta series of laminated lattice LAMBDA_20.

Original entry on oeis.org

1, 0, 17400, 645120, 8699640, 64266240, 334145760, 1327902720, 4450873080, 12747325440, 33162177744, 77585418240, 171110020320, 348920586240, 685157000640, 1264980234240, 2278793539320, 3901915054080
Offset: 0

Views

Author

Keywords

Comments

Lattice of rank 20 and degree 24
Basis:
( +0 +0 +2 -2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +2 -2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +2 +0 +0 +0 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +1 +1 +1 +1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +0 +0 +0 +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +0 +0 +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +0 +0 +0 +2 +0 +0 +0 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +0 +0 +0 +1 +1 +1 +1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +0 +0 +0 +0 +0 +0 +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +0 +1 +1 +0 +0 +1 -1 +0 +0 +1 +1 +0 +0 +1 -1 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +1 +1 +0 +0 +1 -1 +0 +0 +1 +1 +0 +0 +1 -1 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +0 +1 +1 +0 +0 +1 +1 +0 +0 +1 +1 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +1 +1 +0 +0 +1 +1 +0 +0 +1 +1 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
( +1 +0 +1 +0 +1 +0 +0 +1 +0 +0 +1 -1 +0 +0 +0 +0 +0 +0 +1 -1 +0 +0 +0 +0)
( +1 +1 +0 +0 +1 +0 +1 +0 +0 +1 -1 +0 +0 +0 +0 +0 +0 +1 -1 +0 +0 +0 +0 +0)
( +1 +1 +0 +0 +1 +0 +1 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0 +1 +1 +0 +0 +0 +0 +0)
( +1 +0 +1 +0 +1 +0 +0 +1 +1 +1 +0 +0 +0 +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0)
Inner Product Denominator: 2
Level is 4, dimension of space of modular forms is 6. - John Cannon

Examples

			G.f. = 1 + 17400*q^4 + 645120*q^6 + 8699640*q^8 + 64266240*q^10 + 334145760*q^12 + O(q^14).
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 174.

Crossrefs

Cf. A023941.

Programs

  • Magma
    L:=Lattice("Lambda",20); T := ThetaSeries(L,14); T;
    
  • Magma
    A := Basis(ModularForms(Gamma0(4), 10), 20); A[1] + 17400*A[3] + 645120*A[4] + 8699640*A[5] + 64266240*A[6]; /* Michael Somos, May 26 2023 */
    
  • Sage
    M = ModularForms(Gamma0(4), 10);
    bases = [.q_expansion(20) for  in M.integral_basis()];
    f = sum(x*y for (x, y) in zip(bases, [1, 0, 17400, 645120, 8699640, 64266240])); list(f) # Andy Huchala, Jun 05 2021

Extensions

Extended to 1000 terms by John Cannon, Jan 23 2007